发布时间:2023-10-31 16:29 原文链接: “即插即用”纳米颗粒,靶向多种生物目标

  美国加州大学圣迭戈分校工程师开发出一种模块化纳米颗粒,其表面经精心设计,可容纳任何选择的生物分子,从而可定制纳米颗粒以靶向肿瘤、病毒或毒素等不同的生物实体。研究论文30日发表在《自然·纳米技术》上。

  与转基因细胞膜表面结合的生物分子的活细胞荧光可视化图,该细胞膜充当模块化纳米颗粒的涂层。

  图片来源:张实验室/加州大学圣迭戈分校雅各布斯工程学院

  这项技术兼具简单性和效率。研究人员可采用模块化纳米颗粒基底并方便地附着在靶向所需生物实体的蛋白质,而不是为每个特定应用制作全新的纳米颗粒。

  该校雅各布斯工程学院纳米工程教授张良方称,这是一种“即插即用”的平台技术,可快速修饰功能性生物纳米颗粒。

  模块化纳米颗粒设计的关键是一对合成蛋白质,称为SpyCatcher和SpyTag。它的工作原理是:SpyCatcher嵌入纳米颗粒表面,而SpyTag与目标蛋白质(例如针对肿瘤或病毒的蛋白质)进行化学连接。当SpyTag连接的蛋白质与SpyCatcher修饰的纳米颗粒接触时,它们很容易相互结合,使目标蛋白质能够毫不费力地附着在纳米粒子表面。

  研究人员对人胚胎肾293细胞进行了基因改造,以在其表面表达SpyCatcher蛋白。然后,将细胞膜破碎并涂在可生物降解的聚合物纳米颗粒上。随后,将这些纳米颗粒与SpyTag连接的蛋白质混合。

  团队在患有卵巢肿瘤的小鼠中进行了测试,这些纳米颗粒装载有化疗药物多西紫杉醇,每3天通过静脉给小鼠注射一次,总共注射4次,最终抑制了肿瘤生长,同时提高了存活率。接受治疗的小鼠的中位生存期为63—71天,而未经治疗的小鼠的中位生存期为24—29天。


相关文章

Nature发布2024年值得关注的七大技术,首位中国科学家成果入选

2024年1月22日,《自然》发布了2024年值得关注的七大技术——大片段DNA插入、人工智能设计蛋白质、脑机接口、细胞图谱、超高分辨率显微成像、3D打印纳米材料和DeepFake检测。七大技术中,生......

《科学》重磅:科学家首次发现,肿瘤竟会将中性粒细胞的寿命延长3倍

在固若金汤的实体瘤面前,免疫细胞始终是弱小的一方。去年8月份,美国范德堡大学的研究人员发现,杀伤性T细胞竟然在接触肿瘤后的6-12小时内就能发生耗竭[1]。去年年底,以色列魏茨曼科学研究所的一项研究表......

安捷伦推出全新ProteoAnalyzer系统

自动化平行毛细管电泳系统可简化蛋白质分析2024年1月17日,北京——安捷伦科技公司(纽约证交所:A)今日宣布在第23届PepTalk会议期间正式发布用于蛋白质分析的新型自动化平行毛细管电泳系统——A......

肿瘤免疫逃避新调节因子现形

美国西北大学科学家确定了一种以前未知的肿瘤免疫逃避调节因子ATXN3基因。研究显示,抑制ATXN3增强了小鼠的抗肿瘤免疫能力,并提高了PD-1抗体疗法的疗效。相关论文发表于新一期《临床研究杂志》。抗肿......

机器人改造蛋白质速度超过人类

美国科学家开发了一个能对蛋白质进行工程改造的人工智能(AI)驱动的全自动机器人。研究结果是对无需人类干预的蛋白质设计和构建的一次概念验证。相关研究1月12日发表于《自然—化学工程》创刊号。蛋白质在所有......

支架蛋白CRIP1参与蛋白质稳态调控机制被阐明

近日,中国医学科学院血液病医院(中国医学科学院血液学研究所)郝牧研究员、邱录贵主任医师团队在eBioMedicine杂志发表论文,在国际上首次阐明了支架蛋白CRIP1参与自噬、蛋白酶体活性等蛋白质稳态......

几周内或能完成半年任务?AI无需人干预设计新蛋白质

《自然·化学工程》创刊号1月12日发表一项研究,报道了一个能对蛋白质进行工程改造的、由人工智能(AI)驱动的全自动机器人。研究结果是对无需人类干预的蛋白质设计和构建的一次概念验证。蛋白质在所有生命形式......

复旦附属肿瘤医院“最毒乳腺癌”精准治疗新突破:有患者肿瘤已消退

导读:三阴性乳腺癌在分子驱动因素和免疫性状方面表现出异质性。我们之前将三阴性乳腺癌分为四种亚型:管腔雄激素受体(LAR)、免疫调节型、基础样免疫抑制(BLIS)和间充质样(MES)。本研究,我们旨在评......

癌症“照妖镜”——游离DNA助力肿瘤早期探查

“人体细胞也有生命周期。细胞衰老凋亡后,细胞内的物质会渗透出来。其中,DNA会随之‘崩裂降解’,进入血液,成为游离DNA。”中国医学科学院肿瘤医院防癌科副主任张凯教授告诉科技日报记者,“肿瘤细胞的游离......

我国学者首次利用AI方法准确模拟蛋白质“光学指纹”

安徽大学人工智能学院叶盛教授、孙长银教授与中国科学技术大学江俊教授等合作,在国际上首次成功利用人工智能、分子动力学模拟和量子化学理论计算方法,高效准确地模拟了完整真实蛋白质的AmideⅡ区域红外光谱,......