发布时间:2011-07-04 09:34 原文链接: 微小激光环可精确计量纳米粒子

  当科学研究深入到纳米领域,由于目标太小难以精确计量,会让实验变得难以控制。日前,美国华盛顿大学科学家开发出一种比针尖还要小的环形激光传感器,能精确探测单个病毒、形成云的微尘颗粒以及空气中的污染物。改变传感器中的“增益介质”,还能用于探测水中甚至血液中的微粒。该研究发表在6月26日的《自然·纳米技术》网站上。

  回音廊式激光传感器

  这种微型激光传感器属于一种回音廊式共振传感器,由硅玻璃制造。工作原理就像英国圣保罗大教堂里著名的回音廊,一边的人对着廊壁说话,另一边的人就能听到。但与回音廊不同的是,这种传感器共振的不是声波而是光波。

  激光器由底座支起一个“频率衰减模”(环路中激光发射的模式或形状),两束激光以相同频率、相反方向围绕环形光路传播。模场中有一个“短暂尾迹”透过环表面,探测着周边环绕的介质。当一个微粒落在激光环上,就会使一个光模中的能量分散到另一个光模中,从而使两个光模的共振频率略有不同,使光模发生分裂,一束激光就分裂为频率不同的两束,将它们导入光电探测器,会由于频率的不同而产生一种“打击频率”,从而分别测得两束激光的频率。

  “由于微型传感激光器是用溶胶的方法在硅晶片生产,增益介质很容易改变,所以能大量生产。”论文第一作者、华盛顿大学圣路易斯分校电学与系统工程系研究生何丽娜(音译)说,“人们可以选择性地混合稀土离子,加入四乙氧基硅烷溶液、水或盐酸,加热它们直到变得黏稠,然后旋转覆盖在硅晶片上,退火后清除溶剂,就形成了完整的非结晶玻璃。再用蚀刻方法把薄薄的玻璃膜制成硅光盘,在下面用硅柱支撑。最后,通过激光退火处理,使粗糙的硅光盘变成光滑的环形共振腔。”

  主动共振胜于被动

  在早期的研究中,研究小组用普通的玻璃环作为波导,实验模分裂,并使入射光获得增益。但这种环路是被动的,外部激光必须用昂贵的可调激光,才能涵盖检测模分裂所要求的频率范围。

  新型共振传感器本身就是一个微型激光器,而不仅仅是外部激光的共振腔。虽然也用玻璃制成,但掺杂了稀土原子作为“增益介质”。当外部光源达到激发态时,共振环就开始以自身更纯的频率发射激光。

  “用于感测的光是共振器本身从内部产生,所以比被动式传感器更加纯净。如果光不纯,就无法看到微小的频率变化。但主动传感激光器只有一个频率,是真正的窄线宽,所以它更加敏感。”领导该研究的该校电学与系统工程副教授杨兰(音译)说,“新型激光环的敏感性比原来被动传感器要高出好几个数量级,有效分辨率达到1纳米。环路传播的方式也让整个系统更加简单融洽。现在你只需一个光源来激发光介质,因此能用上一种廉价的激光二极管,而不是昂贵的可调激光。”

  探测多种微粒

  小微粒在日常生活中扮演重要角色,而人们通常忽视了它们。病毒微粒让我们生病,盐微粒形成了云,烟灰微粒进入我们的肺,让我们难以呼吸。为了探测各种小微粒,研究人员用不同大小和材质的纳米微粒测试了微激光器的性能,包括聚苯乙烯、病毒粒子和黄金微粒。

  一颗微粒对于一束激光模的影响依赖于它的“极化性”,“极化性”是微粒大小和折射率的函数。当微粒一个个进入微激光的“模式圈”,探测器频率上就会出现独立的上下跳动,形成打击频率。每个独立跳动信号都表示有一个微粒撞到了环上,跳动的次数就反映了微粒的数量。

  激光传感器是通过“共振场”把微粒捕获到共振器上,一旦微粒落到激光环上就很难落下来。当微粒太多时,激光线宽就会变得模糊,最终导致无法探测到新分裂的频率变化。“当线宽和分裂变化相当时,就不能再测了,如果需要你可以换一个来用。”杨兰说。以金粒子为例,同一个激光器模能探测到816个金纳米粒子。

  微激光器能同时支持多个光模。用两个光模重叠检测能生成两个打击频率,能预防探测中的“疏忽”,确保每个微粒都能产生可探测的打击频率。

  改变微激光器的增益介质,能感测不同介质中的微粒,研究小组正在研究利用增强微激光的敏感性来解决多种问题。如感测空气中微粒的用铒元素(一种稀土元素)来掺杂,其光学属性与空气正好符合。感测水中微粒的用镱元素来掺杂,水对镱发出的激光波长吸收率很低。最终还将用于检测血液中微粒的数量。

  杨兰表示,这种传感激光器有望商业化,广泛用于从生物到航空科学各个领域。近期内可能用于监控环境中粒子的动态行为、单纯粒子浓度变化等。下一步将通过改进微激光器的光路和增益介质,用来探测DNA和单个生物分子。

相关文章

共计630万!苏州大学附属第一医院采购4K荧光胸腔镜系统等设备

项目概况:4K荧光胸腔镜系统等设备招标项目的潜在投标人应在苏州市干将西路1296号(深业姑苏中心)1幢17层(苏州市卫康招投标咨询服务有限公司)获取招标文件,并于2023年11月7日15点00分(北京......

上海微系统所研制出微型高精度集成钻石量子电流传感器

电动汽车、智能电网、高速列车等新兴工业应用的快速发展,对高精度的电流传感器提出了更高要求。与传统电流传感器相比,基于量子效应的传感装置可以利用量子态操控技术来提高测量的精度。这些优势使得基于量子效应的......

游离氨基酸检测传感器研发获新进展

游离氨基酸是动物体内重要的小分子代谢物,特定种类或者多种氨基酸浓度的变化可用于动物机体营养和健康状态的评估,指导精准营养供给。赖氨酸与色氨酸为人体必需氨基酸,也是动物限制性氨基酸;谷氨酸为非必需氨基酸......

上海微系统所研制出微型高精度集成钻石量子电流传感器

电动汽车、智能电网、高速列车等新兴工业应用的快速发展,对高精度的电流传感器提出了更高要求。与传统电流传感器相比,基于量子效应的传感装置可以利用量子态操控技术来提高测量的精度。这些优势使得基于量子效应的......

中国科大孙金华:植入光纤传感器为电池做“体检”防患未然

手机爆炸,电动汽车行驶或充电过程中起火引起的火灾事故在生活中经常可见,令人担忧。近日,中国科学技术大学孙金华教授、王青松研究员团队与暨南大学郭团教授团队研制出一款可植入电池内部的高精度光纤传感器。研究......

Nature子刊!国仪量子EPR助力纳米自旋传感器研究

基于量子特性,电子自旋传感器具有高灵敏度,可以广泛应用于探测各种物理化学性质,如电场、磁场、分子或蛋白质动力学以及核或其他粒子等。这些独特的优势和潜在应用场景,使基于自旋的传感器成为当前热点的研究方向......

新型折纸传感器可“见微知著”

美国南加州大学工程学院研究人员受折纸启发创造出一种新的传感器,这些传感器有朝一日可用于检测器官微小变形从而预测疾病,也可用于可穿戴设备和柔性机器人。论文发表在最新一期《科学进展》上。该论文通讯作者、南......

人形机器人核心部件!国产传感器迎来新机遇

近日指出,力传感器与编码器是人形机器人的核心部件,其中力传感器感知并度量力,在人形机器人关节上具有应用,编码器可测量旋转角度与速度,可通过伺服系统应用于人形机器人中。从竞争格局来看,高端编码器与多维力......

首台可见光飞秒光纤激光器面世

加拿大拉瓦尔大学科学家开发出了第一台可在电磁光谱的可见光范围内产生飞秒脉冲的光纤激光器,这种能产生超短、明亮可见波长脉冲的激光器可广泛应用于生物医学、材料加工等领域。通常产生可见光飞秒脉冲的设备复杂且......

研究人员开发基于纳米抗体的酶联免疫分析传感器

7月7日,记者从广东工业大学获悉,该校生物医药学院教授赵肃清团队与美国加州大学戴维斯分校合作,首次制备出高亲和力的可溶性环氧化物水解酶抑制剂(EC5026和TPPU)纳米抗体,并用于开发灵敏的间接竞争......