发布时间:2015-11-02 13:12 原文链接: 微生物所等揭示植物基因沉默抵抗双生病毒新机制

  植物转录后基因沉默(PTGS)和转录水平基因沉默(TGS)是其抵抗病毒以及其它外源基因入侵的一套基于核酸的免疫系统。该系统能够监测、发现并及时清除病毒或外源基因的表达产物,产生对病毒等多种病原的抗性。近几年来,生物体如何在利用该机制抵抗病毒等病原入侵的同时,保持内源基因表达的稳定性是一个热点科学问题。

  在最近20年内,由烟粉虱传播的双生病毒(Geminivirus)引起的病害已经从由局部发生衍变成为最重要的全球性植物病害之一,严重危害玉米、小麦、棉花、木薯、番茄等重要作物和观赏植物。例如仅木薯花叶病毒病一项,每年在非洲撒哈拉地区造成的经济损失就高达12-23亿美元之巨。由于缺乏有效抗病基因及种质资源,目前对双生病毒病害尚无环保高效的防治方法, 仍主要依赖通过对介体昆虫的化学防治来实现病毒的预防与控制。中国科学院微生物研究所叶健青年研究组于2014年双生病毒与寄主植物、传毒介体昆虫烟粉虱三者互作取得重要进展的基础上(Li et al., Plant Cell 2014),同美国洛克菲勒大学教授蔡南海实验室合作,从植物对木薯花叶病毒的感病基因入手,在植物如何抵御双生病毒感染和病毒与植物基因沉默互作研究中,又鉴定了两类植物对木薯花叶病毒的易感基因,揭示了高等植物中保守的抵抗双生病毒病害的新机制,相关的工作已经发表在PLoS Pathogens 和Scientific Reports 上。这两类双生病毒的植物感病基因的发现,为发展广谱高效的植物抗双生病毒病害策略奠定了理论基础,并为通过基因组编辑技术获得增强作物抗病性提供了有效的分子靶标。

  该团队研究人员利用遗传学、细胞学、分子生物学和病毒学等研究手段,首次发现叶型发育干细胞决定因子AS2是双生病毒易感基因,并且在负调控植物细胞质PTGS中发挥重要功能。他们发现AS2参与了植物细胞质mRNA decapping途径,抑制PTGS和植物对双生病毒的抗性。植物内源基因转录具有发生PTGS的潜在的风险,细胞质mRNA decapping途径在真核生物中非常保守,是重要的RNA降解途径,具有抑制PTGS的功能。而双生病毒通过促进AS2转录激活、AS2核质穿梭和增强decapping等策略,抑制植物PTGS的发生,增强其致病性。研究成果为发展高效防治双生病毒病害提供了新的靶点(PLoS Pathogens 2015, 11:e1005196),叶健为该文的第一作者和共同通讯作者,微生物所研究员方荣祥、叶健课题组的孙艳伟、赵平芝为共同作者。

   除PTGS外,TGS也对双生病毒抗性起到重要作用。该团队研究人员发现本生烟草(Nicotiana benthamiana)组蛋白甲基转移酶NbKYP和DNA甲基转移酶NbCMT3是TGS途径的重要因子,通过对双生病毒基因组进行甲基化修饰,限制病毒复制和转录等事件的发生。在NbKYP低表达的本生烟草中,植物和双生病毒基因组的CG和CHG甲基化均大幅度的降低,揭示了NbKYP在TGS中的新特点。研究发现本生烟草也存在负调控TGS的机制,而木薯花叶病毒可以通过激活负调控因子NbRAV2抑制NbKYP转录,从而抑制了本生烟草TGS的发生,进而促进了病毒的复制。相关论文已经被Scientific Reports 接收,叶健为该文的通讯作者,叶健课题组的孙艳伟和马永焕为共同第一作者,姚香梅为共同作者。

  这两项研究工作得到了中国科学院战略性先导科技专项(B类)-“作物病虫害的导向性防控项目(XDB11040300)”、国家自然基金委优秀青年项目(31522046)和植物基因组学国家重点实验室经费的资助。

  双生病毒“劫持”细胞质RNA降解途径抑制植物转录后基因沉默并促进病毒复制。(Ye. PLoS Pathogens 2015)

  双生病毒“劫持”植物细胞核组蛋白甲基转移酶KYP介导的转录水平基因沉默并促进病毒复制。

相关文章

新技术解读微生物间的“谈话”

美国加州大学圣迭戈分校团队开发了一种新的搜索工具,利用由全球研究人员整理的超过6万种微生物的数据库,可立即将微生物与其产生的代谢物进行匹配,从而帮助人们更好地了解微生物的新陈代谢。相关论文5日发表在《......

新技术解读微生物间的“谈话”

美国加州大学圣迭戈分校团队开发了一种新的搜索工具,利用由全球研究人员整理的超过6万种微生物的数据库,可立即将微生物与其产生的代谢物进行匹配,从而帮助人们更好地了解微生物的新陈代谢。相关论文5日发表在《......

这些“年货”重金属污染严重超标,快自查→

市场监管总局关于春节期间食品安全专项抽检情况的通告〔2024年第3号〕近期,市场监管总局组织春节节日市场食品安全专项监督抽检,采取现场抽样和网络抽样方式在全国随机抽取样品1500批次,检出14批次样品......

改造细菌吃进塑料吐出“蜘蛛丝”

美国伦斯勒理工学院和阿贡国家实验室科学家携手,对铜绿假单胞菌进行改造,使其能将塑料垃圾转化为可生物降解的“蜘蛛丝”。得到的丝蛋白与蜘蛛织网用的丝相似,有望应用于纺织、医学以及化妆品行业。这是科学家首次......

成为酒类科技创新的引领者——五粮液深挖微生物资源

面对新一轮科技革命和产业变革的浪潮,以科技创新探索产业发展新业态、新模式、新动能,培育新质生产力,正成为中国企业高质量发展的重要着力点与突破点。白酒酿造是中国传统技艺的代表之一,近年来,五粮液系统谋划......

微生物变身“矿工”开采金属

硒是元素周期表中的第34号元素,对维持动物细胞的功能至关重要。但就像氧气和水一样,太高浓度的硒也会变得有毒。硒天然存在于煤炭矿床和硫化矿石中。采矿过程会产生剩余的岩石,流经这些岩石的雨水或融雪可将硒带......

天津工生所微生物食用蛋白高效创制研究获进展

保障日常蛋白供给关乎国计民生。我国传统农牧业来源的蛋白供给处于供不足需的局面,并导致巨大贸易缺口。因此,亟需一种新的供给模式以保证蛋白大规模供应,同时保障其营养价值、安全性和可持续性。由威尼斯镰刀菌发......

福建福州成立菌草微生物重点实验室

福建省农科院与中福海峡(平潭)发展股份有限公司联合建立的菌草微生物重点实验室签约暨揭牌仪式在福州举行。这是继双方签订战略合作协议以来,又一重要战略合作举措,科企合作迈向新的进程。福建省农业科学院院长余......

微生物协同强化餐厨垃圾厌氧发酵产甲烷方面取得新进展

近日,中国科学院上海高等研究院研究员史吉平、刘莉团队,在微生物协同强化餐厨垃圾厌氧发酵产甲烷方面取得进展。相关研究成果以SynergisticbioaugmentationwithClostridiu......

唐人神:饲料业务的微生物发酵探索与实践

同花顺(300033)金融研究中心12月27日讯,有投资者向唐人神(002567)提问,请问贵公司饲料业务板块是否有合成生物技术储备?公司回答表示,感谢您的提问。公司饲料业务有进行微生物发酵的探索与实......