发布时间:2020-09-21 09:55 原文链接: 污水处理知识之COD化学需氧量你真的了解吗

化学需氧量又称化学耗氧量(chemicaloxygendemand),简称COD。是利用化学氧化剂(如高锰酸钾)将水中可氧化物质(如有机物、亚硝酸盐、亚铁盐、硫化物等)氧化分解,然后根据残留的氧化剂的量计算出氧的消耗量。它和生化需氧量(BOD)一样,是表示水质污染度的重要指标。COD的单位为ppm或毫克/升,其值越小,说明水质污染程度越轻。

水中的还原性物质有各种有机物、亚硝酸盐、硫化物、亚铁盐等。但主要的是有机物。因此,化学需氧量(COD)又往往作为衡量水中有机物质含量多少的指标。

化学需氧量越大,说明水体受有机物的污染越严重。化学需氧量(COD)的测定,随着测定水样中还原性物质以及测定方法的不同,其测定值也有不同。

目前应用普遍的是酸性高锰酸钾氧化法与重铬酸钾氧化法。高锰酸钾(KMnO4)法,氧化率较低,但比较简便,在测定水样中有机物含量的相对比较值及清洁地表水和地下水水样时,可以采用。重铬酸钾(K2Cr2O7)法,氧化率高,再现性好,适用于废水监测中测定水样中有机物的总量。

有机物对工业水系统的危害很大。含有大量的有机物的水在通过除盐系统时会污染离子交换树脂,特别容易污染阴离子交换树脂,使树脂交换能力降低。

有机物在经过预处理时(混凝、澄清和过滤),约可减少50%,但在除盐系统中无法除去,故常通过补给水带入锅炉,使炉水pH值降低。有时有机物还可能带入蒸汽系统和凝结水中,使pH降低,造成系统腐蚀。

在循环水系统中有机物含量高会促进微生物繁殖。因此,不管对除盐、炉水或循环水系统,COD都是越低越好,但并没有统一的限制指标。在循环冷却水系统中COD(KMnO4法)>5mg/L时,水质已开始变差。

一、COD的测定方法

重铬酸钾标准法,也称为回流法(中华人民共和国国家标准)

一、原理

在水样中加入一定量的重铬酸钾和催化剂硫酸银,在强酸性介质中加热回流一定时间,部分重铬酸钾被水样中可氧化物质还原,用硫酸亚铁铵滴定剩余的重铬酸钾,根据消耗重铬酸钾的量计算COD的值。

由于此标准制定于1989年,所以用现在的标准衡量存在很多缺点(2017年新版已经发布):

1、耗时太多,每测定一个样需回流2个小时;

2、回流设备占用的空间大,使批量测定出现困难;

3、分析费用较高,特别是硫酸银;

4、测定过程中,回流水的浪费惊人;

5、毒性的汞盐易造成二次污染;

6、试剂用量大,耗材成本高;

7、测试过程复杂,不宜于推广

二、设备

1.250mL全玻璃回流装置

2.加热装置(电炉)

3.25mL或50mL酸式滴定管,锥形瓶,移液管,容量瓶等。

三、试剂

1.重铬酸钾标准溶液(c1/6K2Cr2O7=0.2500mol/L)

2.试亚铁灵指示液

3.硫酸亚铁铵标准溶液[c(NH4)2Fe(SO4)2˙6H2O≈0.1mol/L](使用前标定)

4.硫酸-硫酸银溶液

重铬酸钾标准法

四、测定步骤

硫酸亚铁铵标定:准确吸取10.00mL重铬酸钾标准溶液于500mL锥形瓶中,加水稀释至110mL左右,缓慢加入30mL浓硫酸,摇匀.冷却后,加入3滴试亚铁灵指示液(约0.15mL),用硫酸亚铁铵溶液滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点。

五、测定

取20mL水样(必要时酌情少取加水至20或稀释后再取),加入10mL的重铬酸钾,插上回流装置,再加入30mL硫酸硫酸银,加热回流 2h

冷却后,用90.00mL水冲洗冷凝管壁,取下锥形瓶。

溶液再度冷却后,加3滴试亚铁灵指示液,用硫酸亚铁铵标准溶液滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点,记录硫酸亚铁铵标准溶液的用量。

测定水样的同时,取20.00mL重蒸馏水,按同样操作步骤作空白实验.记录滴定空白时硫酸亚铁铵标准溶液的用量。

二、重铬酸钾标准法

六、计算

CODCr(O2,mg/L)=[8×1000(V0-V1)˙C]/V

七、注意事项

1、使用0.4g硫酸汞络合氯离子的量可达40mg,如取用20.00mL水样,即可络合2000mg/L氯离子浓度的水样。若氯离子的浓度较低,也可少加硫酸汞,使保持硫酸汞:氯离子=10:1(W/W)。若出现少量氯画汞沉淀,并不影响测定。

2、本方法测定COD的范围为50—500mg/L。对于化学需氧量小于50mg/L的水样,应改用0.0250mol/L重铬酸钾标准溶液。回滴时用0.01mol/L硫酸亚铁铵标准溶液。对于COD大于500mg/L的水样应稀释后再来测定。

3、水样加热回流后,溶液中重铬酸钾剩余量应为加入量的1/5—4/5为宜。

4、用邻苯二甲酸氢钾标准溶液检查试剂的质量和操作技术时,由于每克邻苯二甲酸氢钾的理论CODCr为1.176g,所以溶解0.4251g邻苯二甲酸氢钾(HOOCC6H4COOK)于重蒸馏水中,转入1000mL容量瓶,用重蒸馏水稀释至标线,使之成为500mg/L的CODcr标准溶液。用时新配。

5、CODCr的测定结果应保留四位有效数字。

6、每次实验时,应对硫酸亚铁铵标准滴定溶液进行标定,室温较高时尤其注意其浓度的变化。(也可在滴定后的空白中再加入10.0ml重铬酸钾标准溶液,用硫酸亚铁铵滴定至终点。)

7、水样应保证新鲜,尽快测定。

快速消解分光光度法

原理

试样加入已知量的重铬酸钾溶液,在强硫酸介质中,以硫酸银作为催化剂,经高温消解后,用光度法设备测定COD值

由于此方法测定时间短、二次污染小、试剂量小费用低,所以目前大部分实验室都采用此种方法,但此方法仪器成本较高,使用成本较低,适合于长期需要检测COD单位使用。

设备

国外的设备发展较早,但是价格很高,而且测定时间较长,试剂价格一般用户无法承担,精度不是很高,因为国外仪器的监测标准与我国不同,主要是国外水处理水平和管理制度与我国不同;

快速消解分光光度法主要是根据国产仪器的通行方法,催化快速测定COD的方法是此方法的制定标准,早在80年代初就已经发明出来,经过30多年的应用,成为环境保护行业标准,国内的5B型仪器已经在科研、监测广泛应用。国产仪器凭借价格优势,售后及时已得到了广泛的应用。

测定步骤

取2.5ml试样-----加入试剂-----消解10分钟-----冷却2分钟-----倒入比色皿-----设备显示屏直接显示试样COD浓度。

注意事项

1、高氯水样应采用高氯试剂。

2、废液10ml左右,但酸性较大,应集中回收处理。

3、保证比色皿的透光面清洁。




相关文章

关于征集2024化学领域前沿科学问题、工程技术难题和产业技术问题的通知

各位会员:根据《中国科协办公厅关于征集2024重大科学问题、工程技术难题和产业技术问题的通知》要求,中国化学会面向全体会员和化学工作者启动化学领域前沿科学问题、工程技术难题和产业技术问题的征集工作。有......

远程新能源中化学建投将共建绿色甲醇全产业链生态体系

1月28日,远程新能源商用车集团与中化学建设投资集团战略合作签约仪式在北京进行,双方将围绕甲醇产业、甲醇贸易、新能源及甲醇商用车推广、产业园区共建等领域进行战略合作,助力加快构建能源新发展新格局,增强......

巴西研究发现恒星化学成分与其行星间的相关性

巴西圣保罗大学天文学、地球物理和大气科学研究所(IAG-USP)的科研人员研究了192颗与太阳相似的恒星样本,发现行星的存在与恒星中低锂含量之间存在相关性,这种相关性或有助于解释为什么太阳的锂丰度与其......

46位拿到“新基石”连续5年2500万不看项目只看人

2023年10月30日,腾讯公司“10年100亿元资助基础研究”的“新基石研究员项目”第二期名单发布,来自数学与物质科学、生物与医学科学领域的46位科学家上榜,成为第二批“新基石研究员”。2023年第......

自然科学基金委化学科学部召开重大项目评审会议

2023年10月19日-20日,自然科学基金委化学科学部在北京组织召开2023年度国家自然科学基金重大项目评审会议。自然科学基金委党组成员、副主任于吉红院士出席会议并讲话。化学科学部常务副主任杨俊林主......

爱“迟到”的诺贝尔奖让科学家获得认可的道路越来越长

近日,2023诺贝尔奖揭晓。能够获得这项一年一度的世界上最负盛名的科学奖项,是对获奖者努力的最大认可。但是有研究发现,这种“认可”到得越来越迟了——几乎一半的获奖者从做出有诺贝尔价值的发现到获得该奖项......

Science刊发生医学院张含悦博士等关于铁电化学设计的观点文章

近日,在国家自然科学基金、“东南大学十大科学与技术问题”启动培育基金和江苏省生物材料与器件重点实验室自主课题的资助下,东南大学生物科学与医学工程学院青年教师张含悦与化学化工学院教授熊仁根合作在《科学》......

中科院上海硅酸盐研究所多重四极杆质谱仪中标候选人

项目名称:化学高分辨多重四极杆质谱仪招标项目编号:0834-2341SH23A267招标范围:化学高分辨多重四极杆质谱仪1套招标机构:上海中招招标有限公司招标人:中国科学院上海硅酸盐研究所开标时间:2......

科学家首次发现第一代超大质量恒星化学遗迹

6月7日,国际学术期刊《自然》在线发表了中国科学院国家天文台赵刚研究员带领的国际团队的一项重要成果。研究团队率先在银晕恒星中发现了第一代超大质量恒星演化后坍缩形成的对不稳定超新星(pair-insta......

大化所开发金属辅助氮化合成宽光谱捕光催化材料新方法

 近日,我所太阳能研究部太阳能制储氢材料与催化研究组(DNL1621组)章福祥研究员团队开发了一种低功函金属粉末(Mg、Al、Zr等)辅助氮化的合成新方法,实现了在低温、短时间内高效氮化合成......