萤石型结构的二氧化铈随环境氧分压和温度的变化会形成一些氧空位,具有优异的储氧和释放氧特性,广泛地应用于燃料电池、处理汽车尾气的三效催化剂、光催化、传感器、氧渗透膜和生物医药等领域,长期以来在基础和应用研究上均受到高度重视。特别是,研究发现纳米结构的氧化铈具有一些独特的性质,例如,电子电导提高、尺寸诱致的晶格弛豫、压力诱致的相转变和紫外吸收峰的蓝移等。

  近年来,中科院物理研究所/北京凝聚态物理国家实验室(筹)清洁能源实验室孙春文副研究员、李泓研究员和陈立泉研究员在微纳结构多孔花状氧化铈微球制备【J. Phys. Chem. B, 110, 13445 (2006);Micropor. Mesopor. Mater. 120, 426 (2009)】、应用【Electrochem. Commun., 8, 833 (2006); J. Phys. Chem. Solid, 68, 1785 (2007)】以及一维氧化铈材料合成【Nanotechnology, 16, 1454 (2005);Chem. Lett. 662 (2004)】等方面取得了一系列进展。最近,被英国皇家化学会Energy & Environmental Science主编邀请撰写纳米结构氧化铈方面的综述文章。在文章中,研究人员系统地评述了纳米结构氧化铈基材料的合成、性质、金属和CeO2载体的相互作用、理论研究、新的表征手段和典型的应用(图1),最后指出了今后有关纳米氧化铈材料的制备、应用、理论研究等相关领域的发展方向和趋势。相关工作发表在Energy & Environmental Science 5, 8475 (2012)上。

  目前,对能源需求的日益增加刺激了对高效、低成本和环境友好的替代能量转化和储存系统的研发。氧还原(ORR)和析氧反应(OER)是重要的可再生能源技术的核心反应过程,应用涉及到燃料电池,锂-空气电池和分解水制氢。对于使用有机电解质的锂-空气电池,如果利用空气中的氧气连续地反应提供能量,其理论能量密度大约为11140瓦时/千克,远高于目前的锂离子电池和其它的能量贮存器件。但是,这一类电池因为使用非水溶液电解液,在有机电解液中不溶解的放电产物Li2O2会逐渐堵塞多孔的空气电极。因此,电池性能会随放电时间而衰降。由水溶液体系和非水溶液体系构成的混合电解质体系(图2)能够克服这一障碍。为了使锂-空气电池商业化应用,目前还存在诸多问题需要解决,包括差的电解质稳定性,低的阴极催化剂充/放电效率,差的倍率性能和循环寿命等。

  鉴于碳材料高的电子电导、大的比表面积和合适的孔结构,碳黑(例如,商品的Vulcan XC-72R和Ketjen碳)是目前锂-空气电池和质子交换膜燃料电池(PEMFCs)氧还原催化剂普遍使用的载体材料。但是,碳在0.207伏电位以上(相对于标准氢电极)热力学上是不稳定的,催化剂中的碳载体在高电压下会遭到严重的氧化,也被称为“碳腐蚀”。碳腐蚀可以引起碳载催化剂活性表面积的急剧减小从而导致电池的性能降低,也可以改变催化剂孔形貌和引起孔表面特性的变化,并导致贵金属纳米颗粒从电极上脱落或聚集长大,以及电极表面疏水性能的变化和造成气体传输困难。尽管在质子交换膜燃料电池领域对这一问题已经给予了足够的关注和研究,但是在锂-空气电池中这一问题迄今为止还没有引起重视。

  最近,孙春文副研究员、陈立泉研究员及博士生杨伟等和美国德州大学奥斯汀分校John B. Goodenough教授以及印第安那大学Youngski Kim教授合作在锂-空气电池研究中取得了新的进展,他们提出了一种低成本、高效、稳定的钙钛矿结构氧化物Sr0.95Ce0.05CoO3-δ和Cu的复合材料用于混合电解质体系可充电锂-空气电池的氧还原和析氧双功能催化剂,解决了传统的催化剂碳载体因在高电压下被氧化而导致的性能衰减的问题。为了改善钙钛矿氧化物室温下的电子电导,他们在氧化物颗粒表面负载了金属铜纳米颗粒;此外,还利用了基于水溶液中铜腐蚀机制造成的Cu和CuO之间的循环来进一步改善催化剂的氧还原特性。相关工作发表在Journal of Materials Chemistry 22, 18902 (2012)上。

  以上研究工作得到了国家自然科学基金委、科技部973项目和中国科学院物理所人才启动项目的资助。相关结果已申请三项中国发明ZL(ZL申请号:ZL200510087129.1,ZL200510085508.7,201210162873.3)。

  

  图1. 纳米结构的氧化铈材料及其应用

图2. 混合电解质锂/空气电池示意图

图3. (a)不同催化剂制备的锂/空气电池首次充放电曲线;(b) 放大的不同催化剂首次放电曲线比较; (c) Vulcan XC-72催化剂和Sr0.95Ce0.05CoO3-δ-Cu催化剂在不同电流密度下的放电电压比较。

图4. (左)用Sr0.95Ce0.05CoO3-δ-Cu催化剂制备的锂/空气电池在0.2 mA/cm2充/放电电流密度下不同循环次数的充放电曲线;(右) 电池的电压~充/放电容量曲线。

相关文章

国内首套管式固体氧化物燃料电池测试系统研制成功

近日,由中海石油气电集团技术研发中心自主研发的管式固体氧化物燃料电池测试系统顺利通过技术指标考核。该系统依托国家重点研发计划“氢能技术”专项课题,是国内首套适配管式高温固体氧化物燃料电池的测试系统。据......

氧化物催化剂与氧化物载体间存在界面限域效应

近日,中国科学院大连化学物理研究所包信和院士、研究员傅强团队在界面限域催化研究方面取得新进展。团队发现开放的TiO2等氧化物载体表面能够提供限域环境,并且驱动In2O3颗粒在二氧化碳加氢反应气氛中自发......

新方法可直接测量催化剂颗粒内温度分布

近日,中国科学院大连化学物理研究所研究员叶茂、刘中民院士团队在催化剂颗粒温度测量方面取得新进展。团队开发出单个工业分子筛催化剂颗粒内温度分布三维时空分辨测量方法,揭示了强放热的甲醇制烯烃反应过程中催化......

高达5500小时!厦大团队创制超高稳定性催化剂

厦门大学固体表面物理化学国家重点实验室教授王野、傅钢和中国科学技术大学教授姜政等,创制出高达5500小时以上寿命的超高稳定性In/Rh@S-1催化剂,在近热力学平衡收率条件下,高选择性催化丙烷等低碳烷......

大连化物所等提出低浓度二氧化碳直接电解转化新策略

近日,中国科学院大连化学物理研究所催化基础国家重点实验室碳基资源电催化转化研究组研究员汪国雄和高敦峰团队,与大连工业大学教授安庆大团队合作,在二氧化碳(CO2)电解制备燃料和化学品研究中取得新进展,实......

我国科研团队创新催化剂合成方法,实现高效制甲醇

记者2月24日从江南大学获悉,该校化学与材料工程学院刘小浩教授团队采用光诱导—邻近沉积方法,通过精确控制双原子位点的距离,产生优异的协同催化效应,实现二氧化碳加氢近100%选择性生成甲醇,且生成甲醇的......

哈工大科研团队提出界面电子耦合机制提高催化剂的活性和稳定性

近日,哈尔滨工业大学化工与化学学院王振波教授团队在双功能氧电催化剂研究领域取得重要进展,研究成果以《设计钴-氮-铬跨界面电子桥打破制约活性-稳定性转换以实现超稳定的双功能氧电催化剂》为题发表在《德国应......

我国牵头修订的燃料电池电动汽车动力性试验方法国际标准正式发布

近日,由我国牵头修订的国际标准ISO/TR11954:2024《使用压缩氢气的燃料电池电动汽车动力性试验方法》正式发布。近年来,燃料电池电动汽车因为零排放而成为各国汽车行业的发展重点,也成为国际标准化......

光打印金属纳米结构新法面世

据《先进材料》杂志报道,美国佐治亚理工学院研究人员开发出一种基于光的打印金属纳米结构的方法。这种方法比目前任何可用技术都更快、更便宜。具体而言,它比目前的传统方法快480倍,成本仅为原方法的1/35。......

新型催化剂实现高效全分解水制氢

高效全分解水制氢示意图。中国科学院大连化学物理研究所供图中国科学院大连化学物理研究所研究员章福祥团队在宽光谱捕光催化剂全分解水制氢研究中取得新进展。他们发现金属载体强相互作用可显著促进Ir/BiVO4......