发布时间:2017-11-28 14:05 原文链接: 离子太阳能电池助力海水淡化

  现代太阳能电池可利用光能产生电子和电洞,然后由半导体材料传输到外部电路,供人们使用。但很少有人关注另一种由光能驱动的发电形式,即通过分解水分子得到带相反电荷的质子和氢氧化物。近日,美国研究人员在《焦耳》杂志上报道了一种新设计,它在发电和咸水淡化方面具有很好的应用前景。

  该研究高级作者、加州大学欧文分校助理教授Shane Ardo表示,他们制作了一种“离子模拟的电子P-N结太阳能电池”,能利用光能激发水的半导体特性,从而产生离子电。他们希望利用该机理制造一种可以直接在阳光照射下进行海水淡化的设备。

  在新研究中,研究人员将水通过两种离子交换膜,其中一种膜主要运输正电荷离子的质子,另一种主要运输负电荷离子,如氢氧化物,它们就像一对“化学门”使电荷分离。然后,研究人员再使用激光照射系统,使光敏的有机染料分子结合在膜上,继而解放质子。随后这些质子被运输到膜的酸性侧,产生最高可超过100 mV的离子电流(平均60 mV)。

  尽管除了偶尔出现的超过100 mV阈值的情况,该双膜系统可达到的电流水平仍是其目前的主要限制。若要实现海水淡化,光伏电压必须被放大到200 mV,但是研究人员对实现此目标十分乐观。“了解水的特性,我们就能更好地设计这些双极膜界面,以最大限度地提高电压和电流。”Ardo说。

  从长远来看,海水淡化只是研究人员开发的合成光驱动质子泵的应用之一。它也可能用于连接电子设备,为脑机接口提供信号,甚至能给一些结合了活体组织和人工回路的“人造细胞”提供能量。

相关文章

兰州化物所海水淡化光热界面蒸发研究取得进展

水资源短缺引发越来越多的关注,亟需寻找经济和可持续的方法净化海水。太阳能驱动的界面水蒸发利用太阳能界面集热的方式实现海水淡化,是最有希望获得高质量淡水的方法之一。为实现高效的蒸发速率和光热转化效率,大......

低维材料电荷转移的Marcus反转区间被发现

近日,中科院大连化物所光电材料动力学研究组(1121组)吴凯丰研究员团队在低维材料电荷转移动力学研究方面取得新进展,首次观测到低维材料电荷转移的Marcus反转区间。电荷转移是光合作用、生物信号传导及......

我所观测到低维材料电荷转移的Marcus反转区间

近日,我所光电材料动力学研究组(1121组)吴凯丰研究员团队在低维材料电荷转移动力学研究方面取得新进展,首次观测到低维材料电荷转移的Marcus反转区间。电荷转移是光合作用、生物信号传导及各类能源转化......

气液界面的电荷性质决定冷冻电镜蛋白质取向优势

中国科学院生物物理研究所研究员章新政课题组在JournalofStructuralBiology上,在线发表了题为Effectofchargeonproteinpreferredorientation......

新研究实现分子内电荷转移染料“荧光反转”

分子内电荷转移染料“荧光反转”。华东理工大学供图近日,华东理工大学化学与分子工程学院朱为宏课题组在一项最新研究中揭示了有机染料“荧光反转”机制,该研究成果在线发表于《自然—通讯》。分子内电荷转移(IC......

新技术使海水淡化效率倍增

海水三千,取之一瓢,化其为淡,可解全球用水短缺之难。海洋面积占地球表面的71%,可供人类饮用的淡水面积却只占2.5%。联合国新发布的《世界水发展报告》指出,目前仍有超过1/4的人口生活在水资源严重稀缺......

以色列多管齐下降低海水淡化成本

以色列是一个水资源十分缺乏的国家,但临海的地理环境为发展海水淡化产业提供了良好条件。目前,以色列有5家规模较大的海水淡化厂,年产淡水总量约占全国可饮用水供应量的70%。多举措有效控制海水淡化生产成本是......

物理所等实现固体靶超高电荷量电子加速

近几十年来,新型激光等离子体加速器得到了快速发展。相比于传统的射频加速器,激光等离子加速器在加速梯度和束流尺寸等方面具有显著的优势。传统射频加速器利用波导腔内的振荡电磁场来加速带电粒子,受限于加速介质......

Nature:科学家发现新型的蛋白质互作机制

日前,一项刊登在国际杂志Nature上的研究报告中,来自苏黎世大学等机构的研究人员通过研究发现了一种蛋白质互作的新机制,同时还阐明了细胞如何组织蛋白质间互相作用的发生。这种新型机制主要包括两种完全无组......

学术干货|多孔材料中电荷及物质传输

多孔材料是一种由相互贯通或封闭的孔洞构成网络结构的材料,孔洞的边界或表面由支柱或平板构成。典型的孔结构有:一种是由大量多边形孔在平面上聚集形成的二维结构;由于其形状类似于蜂房的六边形结构而被称为“蜂窝......