概述根瘤菌的共生过程

当豆科植物在幼苗期,土壤中的根瘤菌便被其根毛分泌的有机物吸引而聚集在根毛的周围,并大量繁殖。同时产生一定的分泌物,这些分泌物刺激根毛,使其先端卷曲和膨胀,同时,在根菌瘤分泌的纤维素酶的作用下,根毛细胞壁发生内陷溶解,随即根瘤菌由此侵入根毛。 在根毛内,根瘤菌分裂滋生,聚集成带,外面被一层粘液所包,形成为感染丝,并逐渐向根的中轴延伸。同时,在根瘤菌的刺缴下,根细胞相应地分泌出一种纤维素,包围于感染丝之外,形成了具有纤维素鞘的内生管,又称侵入线。根瘤菌顺侵入线进入幼根的皮层中。 在皮层内,根瘤菌迅速分裂繁殖,皮层细胞受到根瘤菌侵入的刺缴,也迅速分裂,产生大量的新细胞。致使皮层出现局部的膨大。这种膨大的部分,包围着聚生根瘤菌的薄壁组织,从而形成了外向突出生长的根瘤。 之后,含有根瘤菌的薄壁细胞的细胞核和细胞质逐渐被根瘤菌所破坏而消失,根瘤菌相应地转为拟菌体(bacterioid)。 主根瘤菌刚刚进入豆科植物根部的时候,并不能......阅读全文

概述根瘤菌的共生过程

  当豆科植物在幼苗期,土壤中的根瘤菌便被其根毛分泌的有机物吸引而聚集在根毛的周围,并大量繁殖。同时产生一定的分泌物,这些分泌物刺激根毛,使其先端卷曲和膨胀,同时,在根菌瘤分泌的纤维素酶的作用下,根毛细胞壁发生内陷溶解,随即根瘤菌由此侵入根毛。 在根毛内,根瘤菌分裂滋生,聚集成带,外面被一层粘液所包

概述根瘤菌的生活习性

  这种共生体系具有很强的固氮能力。已知全世界豆科植物近两万种。根瘤菌是通过豆科植物根毛、侧根杈口(如花生)或其他部位侵入,形成侵入线,进到根的皮层,刺激宿主皮层细胞分裂,形成根瘤,根瘤菌从侵入线进到根瘤细胞,继续繁殖,根瘤中含有根瘤菌的细胞群构成含菌组织。根瘤菌进入这些宿主细胞后被一层膜套包围,有

上海生科院在豆科植物根瘤菌共生固氮研究中取得进展

       8月12日,《自然-通讯》(Nature Communications)杂志发表了中国科学院上海生命科学研究院植物生理生态研究所王二涛研究组题为DELLA proteins are common components of symbiotic rhizobial and mycorrh

在绿肥产业中纳入根瘤菌研究

 紫云英照片(左图为未接种高效菌剂对照植株,右图为接种高效菌剂植株)   张俊杰摄近年来,农业中不断使用化肥造成了许多问题,很多专家建议采用可再生能源和可持续能源的耕作方法。这些方法包括有机和动物肥、农家肥、堆肥和绿肥等,其中绿肥应用最为广泛。绿肥是指直接或经堆沤后施入土壤作为肥料使用的栽培或野生绿

植物真菌共生过程中的表型研究

丛枝菌根(AM)与三分之二的植物物种存在共生关系。自20世纪50年代以来,人们对接种AM真菌是否能提高植物活力进行了大量的研究,许多盆栽试验(以及一些田间试验)显示了这种情况。但人们越来越认识到这些结果难以复制,以至于博士生有时被建议 “如果你对第一次的菌根实验结果感到满意,就永远不要重复实验”!在

豆科系统发育基因组学和根瘤菌固氮共生演化研究获进展

原文地址:http://www.cas.cn/syky/202103/t20210322_4781822.shtml

共生固氮菌的相关介绍

  在与植物共生的情况下才能固氮或才能有效地固氮,固氮产物氨可直接为共生体提供氮源。主要有根瘤菌属(Rhizobium)的细菌与豆科植物共生形成的根瘤共生体,弗氏菌属(Frankia,一种放线菌)与非豆科植物共生形成的根瘤共生体;某些蓝细菌与植物共生形成的共生体,如念珠藻或鱼腥藻与裸子植物苏铁共生形

分子植物卓越中心揭示根瘤共生信号转导的机制

  7月2日,Current Biology在线发表了中国科学院分子植物科学卓越创新中心王二涛课题组发表的题为Nod factor receptor complex phosphorylates GmGEF2 to stimulate ROP signaling during nodulation的

谢芳研究组揭示侵染线极性生长的分子机理

  10月6日,The Plant Cell在线发表了中国科学院分子植物科学卓越创新中心谢芳研究组题为SPIKE1 Activates the GTPase ROP6 to Guide the Polarized Growth of Infection Threads in Lotus japoni

关于根瘤菌的基本信息介绍

  根瘤菌(Rhizobium)主要指与豆类作物根部共生形成根瘤并能固氮的细菌,一般指根瘤菌属和慢生根瘤菌属;两属都属于根瘤菌目。  根瘤菌细胞皇杆状,有鞭毛和荚膜,不生芽孢。革兰氏染色阴性。在根瘤中生活的菌体呈梨形、棍棒形或“T”“X”“Y”等形状,这种变形的菌体称类菌体。每种根瘤菌都只能在一种或

关于根瘤菌的主要用途介绍

  虽然空气成分中约有80%的氮,但一般植物无法直接利用,花生、大豆、苜蓿等豆科植物,通过与根瘤菌的共生固氮作用,才可以把空气中的分子态氮转变为植物可以利用的氨态氮。在种子发芽生根后,根瘤菌从根毛入侵根部,在一定条件下,形成具有固氮能力的根瘤,在固氮酶的作用下,根瘤中的类菌体将分子态氮转化为氨态氮,

请问固氮菌有哪些用途?

  在形形色色的固氮菌中,名声最大的要数根瘤菌了。根瘤菌平常生活在土壤中,以动植物残体为养料,自由自在地过着“腐生生活”。当土壤中有相应的豆科植物生长时,根瘤菌便迅速向它的根部靠拢,并从根毛弯曲处进入根部。豆科植物的根部细胞在根瘤菌的刺激下加速分裂、膨大,形成了大大小小的“瘤子”,为根瘤菌提供了理想

最新研究揭示大豆与根瘤菌匹配性进化机制

   1月15日,河南大学作物逆境适应与改良国家重点实验室教授王学路团队和华中农业大学教授李友国在《自然—植物》发表研究论文,揭示了大豆与根瘤菌共进化过程中,根瘤菌由裂隙侵染向根毛侵染方式转化的遗传、分子和进化机制,这种侵染方式的转变对于增强大豆共生固氮能力和提高大豆产量起到了重要作用。  该研究首

豆科植物共生固氮过程中调控侵染线形成的新成员

  10月30日,PLoS Genetics 杂志发表了中国科学院上海生命科学研究院植物生理生态研究所谢芳研究组题为SCARN a Novel Class of SCAR Protein That Is Required for Root-Hair Infection during Legume N

研究发现硝酸盐抑制共生结瘤的新机制

10月8日,Nature Plants 在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所谢芳研究组题为NIN interacts with NLPs to mediate nitrate inhibition of nodulation inMedicagotruncat

谢芳研究组发现硝酸盐抑制共生结瘤的新机制

  2018年10月8日,《Nature Plants》在线发表了中科院分子植物科学卓越创新中心/植物生理生态研究所谢芳研究组题为“NIN interacts with NLPs to mediate nitrate inhibition of nodulation inMedicagotrunca

根瘤菌的基本信息介绍

  经过70年代和80年代初的研究,根瘤菌科的变化较大,现包括7属36种,但其中的放射土壤杆菌不能引起植物异常增生。根瘤菌属和慢生根瘤菌属 两属细菌都能从豆科植物根毛侵入根内形成根瘤,并在根瘤内成为分枝的多态细胞,称为类菌体。类菌体在根瘤内不生长繁殖,却能与豆科植物共生固氮,对豆科植物生长有良好作用

真菌相互作用促进质子释放

  大多数豆科植物与真菌共生。丛枝菌根真菌(AM)对磷(P)的吸收和根瘤菌对氮(N2)的固定具有重要的农学和生态学意义。植物-AM真菌-根瘤菌三个共生如何高效吸收营养的机制受到很多关注。AM真菌和根瘤菌能够有效地增加固氮和植物对土壤中磷的吸收,但这破坏了根部阴阳离子平衡,过多的阳离子需要从根部分泌出

首次揭示单细胞水平大豆根瘤基因表达的动态特征

原文地址:http://news.sciencenet.cn/htmlnews/2023/5/500742.shtm近日,中国农业科学院作物科学研究所大豆优异基因资源发掘与创新利用创新团队与国内高校合作,首次在单细胞水平解析了大豆根瘤成熟过程中基因表达的动态变化,并在未成熟的根瘤侵染细胞中成功鉴定到

研究揭示豆科植物共生互作中核内钙信号的编码机制

  8月16日,《美国国家科学院院刊》(PNAS)在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所/中科院植物分子遗传国家重点实验室谢芳研究组撰写的题为Constitutive activation of a nuclear-localized calcium channel com

研究揭示豆科植物共生互作中核内钙信号的编码机制

  8月16日,《美国国家科学院院刊》(PNAS)在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所/中科院植物分子遗传国家重点实验室谢芳研究组撰写的题为Constitutive activation of a nuclear-localized calcium channel com

共生细菌的简介

  各种生物都是有细菌的,但分有害菌和无害菌,有害菌可以使身体不适,要消灭它。可是无害菌不会给身体带来不适而且还有益,可以和被寄生的生物共生的细菌称为共生细菌。  在人的身体内,住着数以万亿计的细菌和其他微生物。它们寄生在人们的皮肤、生殖器、口腔,特别是肠道等部位。实际上,人体细胞并不是人体内数量最

豆科植物生物固氮“氧气悖论”破解了

根瘤被称为豆科植物的“固氮工厂”,反映豆科植物与固氮根瘤菌的共生关系。豆血红蛋白(又称共生血红蛋白)存在其中,是根瘤中调节氧气浓度的“开关”,氧气是豆科植物和根瘤菌呼吸所必需的,但根瘤菌中的固氮酶更喜欢低氧环境,“氧气悖论”就产生了。这一悖论始终悬而未决,也就是说迄今为止有关根瘤内豆血红蛋白基因表达

豆科植物生物固氮“氧气悖论”破解了

根瘤被称为豆科植物的“固氮工厂”,反映豆科植物与固氮根瘤菌的共生关系。豆血红蛋白(又称共生血红蛋白)存在其中,是根瘤中调节氧气浓度的“开关”,氧气是豆科植物和根瘤菌呼吸所必需的,但根瘤菌中的固氮酶更喜欢低氧环境,“氧气悖论”就产生了。这一悖论始终悬而未决,也就是说迄今为止有关根瘤内豆血红蛋白基因表达

豆科植物固氮“氧气悖论”破解

根瘤被称为豆科植物的“固氮工厂”,反映豆科植物与固氮根瘤菌的共生关系。豆血红蛋白(又称共生血红蛋白)存在其中,是根瘤中调节氧气浓度的“开关”,氧气是豆科植物和根瘤菌呼吸必需的,但根瘤菌中的固氮酶更喜欢低氧环境,“氧气悖论”就产生了。这一悖论始终悬而未决,也就是说,迄今为止有关根瘤内豆血红蛋白基因表达

豆科植物固氮“氧气悖论”破解

根瘤被称为豆科植物的“固氮工厂”,反映豆科植物与固氮根瘤菌的共生关系。豆血红蛋白(又称共生血红蛋白)存在其中,是根瘤中调节氧气浓度的“开关”,氧气是豆科植物和根瘤菌呼吸必需的,但根瘤菌中的固氮酶更喜欢低氧环境,“氧气悖论”就产生了。这一悖论始终悬而未决,也就是说,迄今为止有关根瘤内豆血红蛋白基因表达

谁是大自然里的“小猪佩奇VS小羊苏茜”?

在我们的习惯认知中,自然界的生物处在错综复杂的食物链中,一物降一物,很难与“合作”联系起来,但其实“合作共赢”的模式最早就是来源于大自然,在植物、微生物和动物中比比皆是。它们彼此之间也会达成“共识”,一致对外,这种合作关系就叫“共生”,它们的共赢则是赢在获取养分、抵御外敌和传递花粉,赢在生存和繁衍。

乳酸菌和根瘤菌是细菌还是真菌

乳酸菌和根瘤菌都是细菌。乳酸菌(lactic acid bacteria,LAB)是一类能利用可发酵碳水化合物产生大量乳酸的细菌的统称。这类细菌在自然界分布极为广泛,具有丰富的物种多样性,至少包含18个属,共200多种。根瘤菌(Rhizobium)主要指与豆类作物根部共生形成根瘤并能固氮的细菌,一般

豆科植物根瘤固氮能力-与转录因子NLP家族有关

  生物固氮作为潜在的新型氮肥来源,对于农业可持续发展具有重要意义。在豆科植物生物固氮中,豆血红蛋白的含量和组分直接影响根瘤内固氮酶的活性,发挥关键作用。中国科学院分子植物科学卓越创新中心杰里米·戴尔·默里研究组及合作团队首次发现转录因子NLP家族调控根瘤中豆血红蛋白基因表达的分子机制。10月底,相

概述多肽的合成过程

  1、除去保护  Fmoc保护的柱子和单体必须用一种碱性溶剂(piperidine)去除氨基的保护基团。  2、激活和交联  下一个氨基酸的羧基被一种激活剂所激活。化学工艺常用HBTU/HCTU/HITU/HATU+NMM/DIPEA或HOBT+DIC作激活剂,激活的单体与游离的氨基反应交联,形成