遗传发育所拟南芥根木质部发育机制研究获进展

真核生物转录起始因子eIF5A是一类在真核生物中高度保守的基因家族,调控真核生物生长发育的多个生物学过程。 中科院遗传与发育生物研究所左建儒研究组最近的研究发现,拟南芥eIF5A-2/FBR12通过细胞分裂素信号通路调控拟南芥根木质部的发育。 eIF5A-2/FBR1通过与细胞分裂素受体基因(AHK)以及下游磷酸传递蛋白基因(AHP)的遗传互作,调控原生木质部的分化与发育。eIF5A- 2蛋白与受体AHK4以及AHP1形成一个蛋白复合体,抑制细胞分裂素信号通路负调控因子AHP6的表达,从而调控根原生木质部的分化。该研究发现了细胞分裂素信号转导机制的一种新的机制。 该研究结果10月26日在线发表于The Plant Cell(DOI:​10.​1105/​tpc.​113.​116236)。左建儒研究组的任勃博士和陈庆国博士为论文的共同第一作者。 该研究项目得到了国家自然科学基金和植物基因组学国家......阅读全文

杨树次生木质部发育转录调控新机制获揭示

近日,林木遗传育种国家重点实验室(东北林业大学)李伟研究组在《新植物学家》(New Phytologist)上在线发表研究论文。该研究发现了调控杨树次生木质部发育的“PtrMYB074-PtrWRKY19-PtrbHLH186”分子模块,揭示了木材形成过程中转录因子(TF)TF-DNA和TF-TF相

杨树次生木质部单细胞转录组图谱建立

  近日,北京林业大学教授张德强团队在《植物生物技术杂志》发表研究论文。该研究以杨树为研究模式,利用单细胞测序技术、基因组分析、RNA原位杂交、愈伤组织遗传转化等技术建立了杨树次生木质部的单细胞转录组图谱,重构了完整的杨树次生木质部细胞类群,鉴定了调控木质部发育过程的关键转录因子,系统解答了次生木质

遗传发育所拟南芥根木质部发育机制研究获进展

  真核生物转录起始因子eIF5A是一类在真核生物中高度保守的基因家族,调控真核生物生长发育的多个生物学过程。   中科院遗传与发育生物研究所左建儒研究组最近的研究发现,拟南芥eIF5A-2/FBR12通过细胞分裂素信号通路调控拟南芥根木质部的发育。 eIF5A-2/FBR1通过与细胞分裂素受

青岛能源所在杨树细胞壁分子调控方面取得新成果

  木材是地球上重要的可再生资源,是造纸、板材、生物能源等工业的主要原材料,具有十分重要的应用价值。解析木材形成的分子调控机制和调控林木营养生长时间是增加林木产量的有效手段。最近,中国科学院青岛生物能源与过程研究所植物代谢工程团队研究人员在模式木本植物杨树中功能鉴定了多个MYB转录因子,为遗传改良林

蛋白质生物合成的调控

生物体内蛋白质合成的速度,主要在转录水平上,其次在翻译过程中进行调节控制。它受性别、激素、细胞周期、生长发育、健康状况和生存环境等多种因素及参与蛋白质合成的众多的生化物质变化的影响。由于原核生物的翻译与转录通常是偶联在一起的,且其mRNA的寿命短,因而蛋白质合成的速度主要由转录的速度决定。弱化作用是

原核生物基因表达调控途径

真核:转录和翻译分地点进行,转录在核,翻译在基质,翻译是第一个氨基酸是甲硫氨酸,调控方式复杂,多层次,区间性原核:转录和翻译都在基质甚至没转录完就开始翻译,翻译是第一个氨基酸为甲酰甲硫氨酸,调控机制多为操纵子原核生物没有内含子,dna复制和转录相对较容易也比较简单,调控几乎完全由基因上游的rna聚合

蛋白质生物合成的调控

生物体内蛋白质合成的速度,主要在转录水平上,其次在翻译过程中进行调节控制。它受性别、激素、细胞周期、生长发育、健康状况和生存环境等多种因素及参与蛋白质合成的众多的生化物质变化的影响。由于原核生物的翻译与转录通常是偶联在一起的,且其mRNA的寿命短,因而蛋白质合成的速度主要由转录的速度决定。弱化作用是

真核生物翻译的调控(2)

5′端非翻译区的二极结构影响到调控蛋白与帽结构的接近,阻碍40S前起始复合体的装配和在mRNA上的扫描,起负调控的作用。但若二极结构位于 AUG的近下游,(最佳距离为14 nt),将会使移动的40亚基停靠在AUG位点,增强起始反应。真核的系列翻译起始因子可使二极结构解链,使翻译复合体顺利通过

真核生物翻译的调控(1)

原核生物基因表达的调控主要在转录水平上进行,而真核生物由于RNA较为稳定,所以除了存在转录水平的调控以外,在翻译水平上也进行各种形式的调控。在蛋白质生物合成的起始反应中主要涉及到细胞中的四种装置,这就是:1.核糖体,它是蛋白质生物合成的场所;2.蛋白质合成的模板mRNA它是传递基因信息的媒介;3.可

沼渣生物炭通过微生物调控农田土壤

  近日,中国农业科学院烟草研究所烟草栽培与调制创新团队与广东工业大学合作,研究揭示了沼渣生物炭调控农田土壤有机碳结构变化的微生物驱动机制,对土壤碳库增加和农业可持续发展具有重要的指导意义。相关研究结果发表在《全球变化生物学生物能源(Global Change Biology Bioenergy)》

沼渣生物炭通过微生物调控农田土壤

  近日,中国农业科学院烟草研究所烟草栽培与调制创新团队与广东工业大学合作,研究揭示了沼渣生物炭调控农田土壤有机碳结构变化的微生物驱动机制,对土壤碳库增加和农业可持续发展具有重要的指导意义。相关研究结果发表在《全球变化生物学生物能源(Global Change Biology Bioenergy)》

微型RNA调控眼睛干细胞生物过程

  据物理学家组织网28日报道,美国科学家研究发现,微型RNA-103/107家族(miRs-103/107)在调控眼角膜边缘上皮细胞内干细胞的生物过程中扮演着重要角色。发表在《细胞生物学杂志》上的最新研究首次在自噬和巨胞饮这两种重要的细胞过程间建立了关联。   细胞自噬是细胞应对生存压力而降解其内

生物DNA调控生长出金纳米花

  一个跨国研究团队日前宣布,成功利用生物DNA片段实现了金纳米粒子的生长调控。研究人员表示,该成果通过单一步骤对纳米尺度的金属材料进行可自定义精确结构设计和制备,有望创造大量具有先进功能及充满结构艺术性的新型纳米材料。   该研究将生物DNA应用于没有生命的无机化学领域,通过对反应边界条件的控制,

生物钟调控代谢新方式揭示

   人体内有一个很酷的时钟——生物钟。然而,生物钟调控生理、代谢和行为等生命活动的机制十分复杂,仍需要进一步深入探究。记者15日从南京农业大学获悉,该校王恬教授团队与芝加哥大学合作在《细胞通讯》上刊发研究成果,揭示了生物钟调控代谢的新方式。  生物钟由基因和蛋白质打造,是生物进化的礼物。生物钟掌控

生物钟调控代谢新方式揭示

   人体内有一个很酷的时钟——生物钟。然而,生物钟调控生理、代谢和行为等生命活动的机制十分复杂,仍需要进一步深入探究。记者15日从南京农业大学获悉,该校王恬教授团队与芝加哥大学合作在《细胞通讯》上刊发研究成果,揭示了生物钟调控代谢的新方式。  生物钟由基因和蛋白质打造,是生物进化的礼物。生物钟掌控

阐述原核生物基因表达调控途径

这个题目在微生物学上是整整一章的内容,所以要想详细叙述太难了,我大概给你列出吧。转录水平调控:1.操纵子的转录调控;2.分解代谢物阻遏调控;3.细菌的应急反应;4.通过σ因子更换的调控;5.信号转导和二组分调节系统;6.噬菌体溶源化和裂解途径的转录调控。转录后调控:1.翻译起始调控;2.mRNA的稳

关于揭示光周期促进春季树木木质部发育的机制

  与基于模式植物(如拟南芥等)来揭示光周期是如何调节植物生长机制的传统实验研究相比,探索天然林木生长如何与光周期互作机制方面的研究鲜有文献报道。  中国科学院华南植物园研究员黄建国研究团队与国内外同行,利用过程模型等方法,基于年均温、温度的季节变异及纬度等变量,模拟证实光周期在驱动春季天然林木树干

研究揭示马尾松木质部形成及其驱动因子

  从中科院华南植物园获悉,该园森林生态与模拟研究组研究员黄建国等在亚热带森林马尾松木质部形成及其驱动因子研究方面取得重要进展。相关研究近期发表在《树木生理学》上。图片来源于网络  树干是碳的主要储存器官,而我国亚热带森林生态系统中,树木树干木质部如何形成,且什么因子驱动其形成,至今无文献报道。科研

研究揭示马尾松木质部形成及其驱动因子

记者从中科院华南植物园获悉,该园森林生态与模拟研究组研究员黄建国等在亚热带森林马尾松木质部形成及其驱动因子研究方面取得重要进展。相关研究近期发表在《树木生理学》上。 树干是碳的主要储存器官,而我国亚热带森林生态系统中,树木树干木质部如何形成,且什么因子驱动其形成,至今无文献报道。科研人员等利用微

木质部和韧皮部汁液蛋白质提取实验

实验材料韧皮部汁液试剂、试剂盒HClNaOH丙酮甲醇DTTβ-苯巯基乙醇仪器、耗材刀片螺旋盖试管实验步骤3.1 收集木质部汁液木质部汁液属于植物细胞外空间,含有的特殊蛋白质的种类和浓度随植物的状态而变化。因为纯净的木质部汁液容易从大多数植物中得到,所以容易用蛋白质组学工具进行木质部汁液蛋白质的鉴别。

木质部和韧皮部汁液蛋白质提取实验

实验材料:韧皮部汁液    试剂、试剂盒:HCl                                                                  NaOH                                                        

木质部和韧皮部汁液蛋白质提取实验

实验材料 韧皮部汁液试剂、试剂盒 HClNaOH丙酮甲醇DTTβ-苯巯基乙醇仪器、耗材 刀片螺旋盖试管实验步骤 3.1 收集木质部汁液木质部汁液属于植物细胞外空间,含有的特殊蛋白质的种类和浓度随植物的状态而变化。因为纯净的木质部汁液容易从大多数植物中得到,所以容易用蛋白质组学工具进行木质部汁液蛋白质

真核生物与原核生物基因表达调控的差异

原核生物同一群体的每个细胞都和外界环境直接接触,它们主要通过转录调控,以开启或关闭某些基因的表达来适应环境条件(主要是营养水平的变化),故环境因子往往是调控的诱导物。而大多数真核生物,基因表达调控最明显的特征是能在特定时间和特定的细胞中激活特定的基因,从而实现“预定”的,有序的,不可逆的分化和发育过

新发现:植物生物钟调控因子

  为了适应地球自转引起的环境周期性变化,地球上几乎所有的真核生物都进化出了内源计时器——生物钟,它可以维持细胞内近24小时的基因表达节律性以适应环境中光温因子的昼夜动态变化。生物钟参与调控植物体内几乎所有的生长发育和代谢过程,如光周期依赖的开花时间、发育、叶片衰老,以及植物对生物与非生物胁迫的响应

生物发酵过程中有哪些关键调控因素

影响微生物发酵能否成功的因素有1、是菌种的选取。2、是菌体浓度的控制。3、是基质的控制,包括碳源、氮源和磷酸盐的量的控制。4、是溶氧量的控制。5、酸碱度的控制。下面是微生物发酵过程的一篇文章,希望对你有帮助!微生物发酵过程即微生物反应过程,是指由微生物在生长繁殖过程中所引起的生化反应过程。根据微生物

真核生物基因表达调控有哪些环节

可分为三种主要途径环节:1、遗传调控(转录因子与靶标基因的直接相互作用);2、调控转录因子与转录机制相互作用,3、表观遗传调控(影响转录的DNA结构的非序列变化)。转录调控通过转录因子直接调控靶标DNA表达是最简单和最直接的转录调控改变转录水平的方法。基因的编码区周围通常都具有几个蛋白质结合位点,具

生物发酵过程中有哪些关键调控因素

影响微生物发酵能否成功的因素有1、是菌种的选取。2、是菌体浓度的控制。3、是基质的控制,包括碳源、氮源和磷酸盐的量的控制。4、是溶氧量的控制。5、酸碱度的控制。下面是微生物发酵过程的一篇文章,希望对你有帮助!微生物发酵过程即微生物反应过程,是指由微生物在生长繁殖过程中所引起的生化反应过程。根据微生物

植生生态所研究发现硝酸根重要作用

  近期,植物学研究权威期刊Plant Cell在线发表了中科院上海生命科学研究院植物生理生态研究所植物分子遗传国家重点实验室龚继明研究组最新研究成果:拟南芥NRT1.8基因介导的NO3-再分配在植物逆境胁迫耐受机理中起着重要的调节作用。   硝酸根(NO3-)是陆生植物最重要的氮源

973计划林木品质形成与调控研究项目启动

  随着国民经济的快速发展,我国木材需求量巨大,满足日益增长的用材需求已成为人工林建设的一项重要任务。虽然速生林在一定程度上增加了木材数量,但目前的速生树种品质低、品种少、质量差,有限的人工林树种很难同时实现优质、高产。其中的主要问题是速生林育种研究中木材形成的关键遗传控制因子不明、机制不清,制约了

美研究称“发脾气”受生物钟调控

  新华社华盛顿4月9日电 美国科学家进行的一项小鼠实验发现,生物钟参与了调控动物的“进攻性”行为。这一研究结果有望用于治疗阿尔茨海默病患者的黄昏焦躁症状。   9日发表在英国《自然·神经学》杂志上的研究表明,雄性小鼠间为保护领地而发生的好斗行为在一天中的强度和频率会随光照发生变化。