Antpedia LOGO WIKI资讯

基因芯片检测原理(一)

基因芯片的基本原理同芯片技术中杂交测序(sequencing by hybridization, SBH)。即任何线状的单链DNA或RNA序列均可被分解为一个序列固定、错落而重叠的寡核苷酸,又称亚序列(subsequence)。例如可把寡核苷酸序列TTAGCTCATATG分解成5个8 nt亚序列: (1) CTCATATG (2) GCTCATAT (3) AGCTCATA (4) TAGCTCAT (5) TTAGCTCA这5个亚序列依次错开一个碱基而重叠7个碱基。亚序列中A、T、C、G 4个碱基自由组合而形成的所有可能的序列共有65536种。假如只考虑完全互补的杂交,那么48个8 nt亚序列探针中,仅有上述5个能同靶DNA杂交。可以用人工合成的已知序列的所有可能的n体寡核苷酸探针与一个未知的荧光标记DNA/RNA序列杂交,通过对杂交荧光信号检测,检出所有能与靶DNA杂......阅读全文

基因芯片

基因芯片(genechip)(又称DNA芯片、生物芯片)的原型是80年代中期提出的。基因芯片的测序原理是杂交测序方法,即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法,在一块基片表面固定了序列已知的靶核苷酸的探针。当溶液中带有荧光标记的核酸序列TATGCAATCTAG,与基因芯片上对应位置的

基因芯片 简介

随着人类基因组(测序)计划( Human genome project )的逐步实施以及分子生物学相关学科的迅猛发展,越来越多的动植物、微生物基因组序列得以测定,基因序列数据正在以前所未有的速度迅速增长。然而 , 怎样去研究如此众多基因在生命过程中所担负的功能就成了全世界生命科学工作者共

基因芯片概念

基因芯片(又称 DNA 芯片、生物芯片)技术就是顺应这一科学发展要求的产物,它的出现为解决此类问题提供了光辉的前景。该技术系指将大量(通常每平方厘米点阵密度高于 400 )探针分子固定于支持物上后与标记的样品分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息。通俗地说,

基因芯片简介

随着人类基因组(测序)计划(Human genome project)的逐步实施以及分子生物学相关学科的迅猛发展,越来越多的动植物、微生物基因组序列得以测定,基因序列数据正在以前所未有的速度迅速增长。然而,怎样去研究如此众多基因在生命过程中所担负的功能就成了全世界生命科学工作者共同的课题。为此,建立

基因芯片 原理

基因芯片(gene chip)的原型是80年代中期提出的。基因芯片的测序原理是杂交测序方法,即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法,可以基因芯片的测序原理用图11-5-1来说明。在一块基片表面固定了序列已知的八核苷酸的探针。当溶液中带有荧光标记的核酸序列TATGCAATCTAG,与

基因芯片相关技术

样品的准备及杂交检测目前,由于灵敏度所限,多数方法需要在标记和分析前对样品进行适当程序的扩增,不过也有不少人试图绕过这一问题,如 Mosaic Technologies 公司引入的固相 PCR 方法,引物特异性强,无交叉污染并且省去了液相处理的烦琐; Lynx Therapeutics 公司引入

基因芯片发展历史

俄罗斯科学院恩格尔哈得分子生物学研究所和美国阿贡国家实验室(ANL)的科学家们最早在文献中提出了用杂交法测定核酸序列(SBH)新技术的想法。当时用的是多聚寡核酸探针。几乎与此同时英国牛津大学生化系的Sourthern等也取得了在载体固定寡核苷酸及杂交法测序的国际专利。在这些技术储备的基础上,1994

基因芯片主要类型

目前已有多种方法可以将寡核苷酸或短肽固定到固相支持物上。这些方法总体上有两种,即原位合成( in situ synthesis )与合成点样两种。支持物有多种如玻璃片、硅片、聚丙烯膜、硝酸纤维素膜、尼龙膜等,但需经特殊处理。作原位合成的支持物在聚合反应前要先使其表面衍生出羟基或氨基(视所要固定基因芯

基因芯片的应用

1998 年底美国科学促进会将基因芯片技术列为 1998 年度自然科学领域十大进展之一,足见其在科学史上的意义。现在,基因芯片这一时代的宠儿已被应用到生物科学众多的领域之中。它以其可同时、快速、准确地分析数以千计基因组信息的本领而显示出了巨大的威力。这些应用主要包括基因表达检测、突变检测、基因组多态

基因芯片的应用

DNA芯片技术就是指在固相支持物上原位合成寡核苷酸或者直接将大量的DNA探针以显微打印的方式有序地固化于支持物表面,然后与标记的样品杂交,通过对杂交信号的检测分析,即可获得样品的遗传信息。是伴随“人类基因组计划”的研究进展而快速发展起来的一门高新技术。通俗地说,基因芯片是通过微加工技术,将数以万计、