Antpedia LOGO WIKI资讯

单分散银纳米粒子标准品及其生物安全性定量评价获进展

金属纳米晶由于在成像、催化、生物标记、信息存储、光电子器件和拉曼光谱等领域的应用而受到广泛关注。在纳米尺度内(1-100nm),金属纳米晶的物化性质(如光,磁,电学性质等)具有尺寸依赖性,因此对这些金属纳米晶的尺寸、形貌及元素组成分布的可控调节,是目前纳米材料领域的研究热点。在众多金属纳米晶中,纳米银因为其优异的抗菌性能,在伤口敷料、导管、化妆品、服装以及食品行业等得到广泛应用。但与此同时,生物体频繁暴露于金属银的环境中所受到的潜在生物安全性威胁也随之增大,对纳米银的生物安全性定量评估亟待解决。 最近,中科院苏州纳米技术与纳米仿生研究所生物医学部王强斌课题组与遗传发育所戴建武研究员以及中国食品药品检定研究院合作,基于金属纳米晶的生物安全性评价问题,开展了纳米银的生物毒性定量评估的研究工作。首次制备得到了一系列直径分别为25、35、45、60和70nm等五种单分散纳米银颗粒(图1);然后以这些单分散银纳米粒子作为标准品,......阅读全文

中国科大孪晶金属纳米晶催化作用机制研究取得进展

  近日,中国科学技术大学教授曾杰课题组与李震宇合作,在孪晶金属纳米晶催化作用机制研究方面取得新进展。研究人员成功制备了Au75Pd25二十面体和八面体,尽管两种合金暴露同一种晶面,但是具备孪晶结构的Au75Pd25二十面体在环己烷氧化反应中催化活性和选择性明显高于单晶结构的八面体。通过深入的理论计

纳米活矿石和纳米矿晶有什么区别

纳米矿晶是黑色颗粒的,成分中包含大量活性炭,所以成本比较低,价格比较便宜,一般30元一箱。纳米活矿石是黑白双色颗粒,成分主要以海泡石、凹凸棒晶、电气石等矿物质成分为主的,不含有活性炭等杂质,所以售价较高,是目前最好的一种除甲醛产品。不过,购买的时候一定要选择真空包装的,散装的和非真空包装的都接触大量

万人计划学者发现超高稳定性金属纳米晶

  金属晶粒细化至纳米尺寸可以大幅度提高其强度和硬度,但是由于引入了大量的晶界,纳米金属材料的结构稳定性变低,晶粒长大倾向明显。在一些纳米金属,如纯铜中,纳米晶粒甚至在室温条件下即发生长大。这种固有的不稳定性一方面给纳米金属材料的制备带来困难,另一方面也限制了纳米金属的实际应用。图1 退火引起的梯度

金属所在纳米金属中发现晶界稳定性控制的硬化软化行为

  金属材料的强度或硬度往往随晶粒尺寸减小而增加,遵循基于位错塞积变形机制的Hall-Petch关系,即强度的增加与晶粒尺寸的平方根成反比。而当晶粒尺寸低于某临界晶粒尺寸(通常为10-30纳米)时,金属的强度会偏离Hall-Petch关系,有些金属的强度不再升高甚至下降,这种纳米尺度下的软化现象通常

乌克兰研发出新型非晶纳米晶带材

   乌克兰国家科学院金属物理研究所发布消息称,其研究人员开发出一种铁基ХКБРС合金,可用于生产加热元件。这种合金的非晶化倾向高,它既是金属,也是金属玻璃。普通的无定形金属加热和转变为结晶状态时会受损,当温度(如大于200℃)升高时,变得非常脆弱,而用该合金制成的加热元件属于低温制品,不会受损。 

纳米孪晶金属与历史无关的稳定循环响应研究取得突破

  疲劳通常指反复施加循环载荷(远小于材料的屈服应力极限)而引起的一种材料弱化过程。实际服役过程中约90%金属构件的失效均由疲劳断裂引起,其原因是材料在循环加载过程中微观结构不断变化、遭受严重且不可逆转的累积损伤,从而导致材料循环硬化或软化直至最终失效。金属材料的非稳定循环响应及疲劳寿命强烈依赖于其

苏州纳米所铜基硫化物纳米晶研究取得进展

  铜基硫化物纳米晶作为重要的半导体材料,在光电、传感以及能源转换等领域受到了广泛的关注。近年来,研究发现非化学计量比Cu2-xS纳米晶在近红外区表现出强烈的等离子共振吸收性质,且这种独特的光学性质可通过晶体中的缺陷密度及颗粒尺寸、形貌加以调控,从而使得它在生物医药领域有极佳的应用前景。  近年来,

双重纳米结构非晶碳薄膜问世

  近日,中科院兰州化学物理研究所固体润滑国家重点实验室空间润滑材料组,在国际上首次制备了一种具有双重纳米结构的非晶碳薄膜材料。试验表明,该种薄膜材料具有极为优异的回弹性(弹性恢复系数高达95%),且在真空条

中国科大在金属-硫化物异质结构纳米晶研究中取得进展

  近日,中国科学技术大学曾杰教授研究组在金属-硫化物异质结构的合成与生长机理研究方面取得新进展。研究人员通过在一步合成法中引入不同的金属前驱体,分别实现了Pt-Cu2S、CuPt和CuPt-Cu2S 等纳米晶体的可控合成,并成功调控了它们在催化反应中的活性和选择性。该成果发表在11月13日出版的《

智能所双金属纳米枝晶生长机理研究取得新进展

  利用铜与银离子的置换反应生长纳米银枝状晶已被广泛接受,但是在微纳尺度下的枝晶生长过程与机理还有待进一步深入探索。中科院合肥物质科学研究院智能所和合肥微尺度物质科学国家实验室在此领域联合开展科研并取得进展,有关成果于4月1日发表在国际纳米材料领域知名期刊《微尺度》(Small, 2