Antpedia LOGO WIKI资讯

Nature子刊:遗传911,细胞的应急系统

有毒化学物质会对细胞造成严重破坏,损害DNA和其他重要的分子。来自麻省理工学院和纽约州立大学奥尔巴尼分校研究人员的一项新研究揭示了一个分子应急反应系统如何将细胞转换到损伤控制模式,帮助其快速生成抵抗这种损害从而生存下去的机制。 麻省理工学院的生物工程学教授Peter Dedon和同事们过去曾证实砷等毒物处理的细胞中一类称之为转移RNA(tRNA)的分子会发生化学修饰改变。tRNA的功能是在细胞内传递蛋白质的构件――氨基酸。在发表于7月3日《自然通讯》(Nature Communications)杂志上的一篇新论文中,研究小组探究了这些修饰帮助细胞存活的机制。 研究人员发现有毒压力重编程tRNA修饰,开启了一个系统使细胞蛋白质构建机器偏离它的日常活动,进入紧急行动。“最终,一个逐步的机制导致了选择性表达生存所需的蛋白质,”文章的资深作者Dedon说。 这些研究发现不仅提供了细胞对毒物反应的认识,也揭示......阅读全文

重新编码生命药物研发的革新,更是生物领域的伟大尝试

  经历了数百万年的进化后,地球上的所有生物都拥有64个遗传基因密码子。但是哈佛大学的科学家认为他们可以改变这一现状,近日他们发表文章称,在实验室里他们创造了一个只含有57个密码子的完整的细菌基因组。这一实验对生物基因学来说具有十分重要的意义。  乍一看,这个实验对转基因细菌培育药物有很好的推进作用

Nature:科学家成功构建只需61个密码子的大肠杆菌

  在大自然中,生物的基因组可利用64个密码子编码蛋白质的合成,并能从多达6个同义编码子中选择1个有义密码子来编码每个氨基酸。同义密码子具有多样性特点,并可能在基因组的不同位置具有不同的作用。已有研究发现,许多同义替换是有害的,同义密码子的改变会影响mRNA的折叠,蛋白的表达和共翻译蛋白折叠。  5

遗传学大牛Science重磅成果:改写活体基因组

  遗传密码通常包含64个密码子, 但现在来自哈佛大学的研究人员和同事们设计出了只包含57个密码子的大肠杆菌基因组。在发表于8月18日《科学》(Science)杂志上的一篇论文中,该研究小组描述了这一计算机生成的基因组,并报告了在实验室中合成它的第一阶段。  论文的共同作者、哈佛大学George C

叶克穷:改写大肠杆菌基因组的科学意义究竟几何

   合成生物学家日前报告了迄今为止意义最为深远的一项细菌基因组重写结果:他们成功换下了大肠杆菌64个遗传密码子中的7个,并通过在55个片段中合成脱氧核糖核酸(DNA)从而减少了遗传密码子的数量,科学家们还将这些碎片组装到了另一个有功能的大肠杆菌中。  有人认为这项发表在美国《科学》杂志上的研究成果

Nature:第一个完全合成且彻底改变DNA密码的生物诞生了

  发表在《Nature》上的一项研究显示,英国剑桥大学的科学家已经在实验室成功创造了世界上第一个完全合成并且彻底改变DNA密码的生命体。它是普遍存在于土壤和人类肠道中的大肠杆菌(Escherichia coli),与其天然近亲相似,但依靠一套较小的遗传指令存活。  这种细菌的存在证明,生命可以存在

Genome Biol Evol:重新揭秘遗传密码的规律

  众所周知,细胞可以通过转录过程“解码” 其基因组DNA中包含的信息,并将其“翻译”为氨基酸,进而组装为蛋白质。通过大量的实验,科学家们找到了和核苷酸碱基分子与氨基酸分子之间的对应关系,并被称为“三联体”密码子。这种编码规则在进化上是十分保守的。例如,在几乎所有生物中,密码子“ AGA”对应着天冬

Genome Biol Evol:重新揭秘遗传密码的规律

  众所周知,细胞可以通过转录过程“解码” 其基因组DNA中包含的信息,并将其“翻译”为氨基酸,进而组装为蛋白质。通过大量的实验,科学家们找到了和核苷酸碱基分子与氨基酸分子之间的对应关系,并被称为“三联体”密码子。这种编码规则在进化上是十分保守的。例如,在几乎所有生物中,密码子“ AGA”对应着天冬

古细菌向达尔文叫板

  走极端的小怪物   世界上的生物有千千万万,我们熟悉的那些生物往往都是肉眼所见的动植物,比如一些家畜、农作物、观赏树等。其实我们人类属于体型很大的生物了,所以我们站在自己大动物的角度上观察生物界,难免有失偏颇。   201808231534989602349.jpg   比如,很少有人知道

基因数据分析的主流软件

在过去的几年中,许多生物的基因组完成了测序工作,如何对如此庞大的原始序列信息进行分析和应用,正是现在最为棘手的问题。大量的基因预测软件和在线工具应运而生。如何广泛而深入地了解并能有的放矢地利用这些工具,已经成为21世纪分子生物学家的必修课。随着大规模EST和cDNA序列信息的获取,那些基于表达序列同

人类基因组编写计划——让细胞“百毒不侵”

  美国纽约大学的杰夫·博伊科、哈佛大学的乔治·邱奇、耶鲁大学生物工程师法瑞恩·艾萨克等领衔的科学家在美国《科学》杂志上刊文宣布,将筹资1亿美元,启动历时10年的人类基因组编写计划(GP-write),从头开始在实验室中合成出人类基因组。   基因编辑 (4).jpg   消息一经发布,就引发了

Nature:与众不同的蛋白合成调控方式—分子计数器

  来自莫斯科国立大学等处的研究人员发现了了一种特殊的蛋白质合成调控机制,他们称之为“分子计数器(molecular timer,生物通译)”。这种机制能它控制细胞产生的蛋白分子的数量,防止多余分子的生成。  研究人员发现通过药物激活这种机制,也许能有效地对抗癌症肿瘤。这项研究得到了俄罗斯科学基金会

科学家为细菌重编基因组密码 提高抗病毒能力

  据物理学家组织网10月18日(北京时间)报道,最近,美国耶鲁大学和哈佛大学的科学家合作,为一种细菌重新编写了完整的基因组编码,并提高了其抗病毒能力。相关论文发表在10月18日的《科学》杂志上。   “这是第一次从根本上改变了遗传密码。”论文共同高级作者、耶鲁大学分子、细胞与发育生物学副教授法伦

科学家为一种细菌重编基因组密码

  报道,最近,美国耶鲁大学和哈佛大学的科学家合作,为一种细菌重新编写了完整的基因组编码,并提高了其抗病毒能力。相关论文发表在10月18日的《科学》杂志上。   “这是第一次从根本上改变了遗传密码。”论文共同高级作者、耶鲁大学分子、细胞与发育生物学副教授法伦·艾萨克斯说,“创造一个有着新基因编码的

人类基因组编写计划转向设计“超安全”细胞

人类基因组编写计划旨在使人类细胞对抗包括HIV在内的各种病毒。图中展示病毒感染了一个细胞系。 图片来源:《自然》杂志官网 2016年6月2日,美国纽约大学的杰夫·博伊科、哈佛大学的乔治·邱奇、耶鲁大学生物工程师法瑞恩·艾萨克等领衔的科学家在美国《科学》杂志上刊文宣布,将筹资1亿美

新型冠状病毒的第一个传播者:消失的零号病人

消失的零号病人  零号病人并不一定是第一个发病者。  而是第一个感染,并且把病毒传播给其它人的人。  因此,第一个出现症状并发病的人叫做一号病人。  那么,零号病人的医学意义是什么呢?专家给出了提示:  1. 能够锁定传染源,比如是否接触了什么动物?  2. 锁定传播方式,比如跟动物是如何接触的? 

人类基因组概述

  一、细胞核基因组  每条染色体含1个DNA分子,1个细胞的全部遗传信息(基因)都编码在线状的DNA分子上。由于每个体细胞中有2套染色体(2n),故所含的DNA是由两个基因组(genome)构成。每个单倍体基因组约含3.2×109bp。人类基因的平均长度为1-1.5kb,所以基因组以足以

英将自然界中不存在的氨基酸加入线虫体内

  据英国广播公司(BBC)近日报道,英国科学家修改了线虫的遗传代码,首次将一种自然界中并不存在的氨基酸加入其体内。科学家们表示,最新技术让生物学家能在原子层面操控生命有机体的分子,制造出自然界中并不存在的蛋白质。相关研究发表在《美国化学学会会刊》上。   带有遗传信息的DNA(脱氧

酵母双杂交技术及其在蛋白质组研究中的应用

作为后基因组时代出现的新兴研究领域之一, 蛋白质组学(proteomics)正受到越来越多的关注。 蛋白质组学的研究目标是对机体或细胞的所有蛋白质进行鉴定和结构功能分析。 蛋白质组学的研究不局限任何特定的方法。 高分辨率的蛋白质分离技术如二维凝胶电泳和高效液相层析, 经典的蛋白质鉴定方法如氨

酵母双杂交技术及其在蛋白质组研究中的应用

     作为后基因组时代出现的新兴研究领域之一, 蛋白质组学(proteomics)正受到越来越多的关注。 蛋白质组学的研究目标是对机体或细胞的所有蛋白质进行鉴定和结构功能分析。 蛋白质组学的研究不局限任何特定的方法。 高分辨率的蛋白质分离技术如二维凝胶电泳和高效液相

人类罕见病中公认最痛苦的疾病之一 “蝴蝶宝贝”的新希望

  他们有个美丽的名字:“蝴蝶宝贝”,但美丽的背后是常人难以想像的病痛,因为他们所患的是人类罕见病中公认最痛苦的疾病之一:遗传性大疱性表皮松解症,皮肤像蝴蝶翅膀一样脆弱,而且目前没有安全有效的根治方法。  清华大学药学院和医学院传染病中心谭旭课题组与北京大学第一医院杨勇、林志淼课题组合作发现的是该疾

北京基因组所合作研究揭示密码子表的内在规律

  对于绝大多数物种来说,外界所能提供的能源是有限的,如何有效利用有限的资源,往往对物种的生存起决定作用。中国科学院北京基因组研究所基因组科学与信息重点实验室胡松年组客座研究员陈卫华以及德国杜塞尔多夫大学、欧洲分子生物实验室的合作者们从全新的角度出发,对“能量节省”压力下基因组的演化情况进行了系统研

北京基因组所合作研究揭示密码子表的内在规律

  对于绝大多数物种来说,外界所能提供的能源是有限的,如何有效利用有限的资源,往往对物种的生存起决定作用。中国科学院北京基因组研究所基因组科学与信息重点实验室胡松年组客座研究员陈卫华以及德国杜塞尔多夫大学、欧洲分子生物实验室的合作者们从全新的角度出发,对“能量节省”压力下基因组的演化情况进行了系统研

精确医学”须谨慎解读

  美国于2015年年初提出的“精确医学”计划倍受世界各国关注。有消息称,我国的相关计划将在今年下半年或明年启动。对此,中科院上海生命科学研究院吴家睿研究员近期撰文指出,“精确医学”是一个有着丰富内涵的复杂概念,需要人们认真地思考和小心地解读。当前,亟需我们明晰的两个问题是:为何要在此时启动精确医学

从人类基因组到人造生命:克雷格·文特尔领路生命科学

  5 展望  当生命科学进入后基因组时代的第10年,合成生物学也在Craig Venter等人的一个个创新与突破中走过了10个年头。今天,“人造细胞”的成功见证了合成生物学领域由无机到有机,从基因组到细胞的又一次飞越。让人不禁感叹现代生物科技的高度发达。这一研究成果与其说是人类征服自然过

除了合成蛋白质,核糖体还有哪些重要功能?

  【1】elife:核糖体也能调控基因的表达?  doi:10.7554/eLife.45396  来自Stowers医学研究所的研究人员发现了人体细胞中核糖体的一种新功能,即存在破坏正常mRNA的功能。“很长一段时间以来,很多人都认为核糖体是细胞中生产蛋白质的分子机器,”Stowers助理研究员

Nature:“生命字母表”中的新成员

        众所周知,地球上的一切生命都可看作是五个字母(A, G, C, T, U)的编码组合,这五个字母代表了核苷酸内的五种不同碱基。日前,科学家构建出了可以将非天然 DNA 碱基对稳定代代相传的新型有机体,这一成果意味着

全球研究人员致力于创造首个合成真核生物基因组

  10年前,当遗传学家Ronald Davis首次提出,他的同事正在尝试创造人工酵母染色体,并将其放入活细胞时,Jef Boeke并没有太多想法。Davis就职于美国加州斯坦福大学医学院,是一个有远见的人。他提出,实验室酵母是当时合成生物学领域的下一个发展方向。不过,Boeke并不理

用于蛋白质表达的标签实验

实验步骤 一、设计具有标签的蛋白质时需要考虑的因素 亲和力和可溶性的选择 在大肠埃布氏菌中生产外源蛋白时面临两个挑战: 一? 是所用蛋白质表达系统的表达水平很低; 二是所表达的蛋白质被错误折叠进不溶性的聚集体—包涵体中。弱启

新颖的融合蛋白表达系统

 研究者们在分离到某一基因后,要对其编码蛋白质进行研究最理所当然的工作就是表达——即:有目的性地合成外源基因产物。在重组DNA技术的发展早期,人们认为在基因的前面有一个强启动子和一个起始密码子就足以在大肠杆菌中获得很好的表达。随后,认识到获得有效的翻译所需的条件要复杂得多,除了要有强启动子

人工合成生命的时代要来了?

  在我们生存的自然界里,除了单细胞生物、少数低等生物,绝大多数的生物从小到大都遵循着一个相同的规律——由一个受精卵发育形成。  就像是父母的精卵结合,产生了受精卵,受精卵开始快速的生长分裂,经历四细胞期、八细胞期后形成桑椹胚,直到胚胎干细胞有了明显的分化进而发育成囊胚,原肠胚,最后发育成一个各器官