一氧化碳的测定—气相色谱法(4.2)

(2)氢火焰离子化检测器(FID):这种检测器是使被测组分离子化,离解成正、负离子,经收集汇成离子流,通过对离子流的测量进行定量分析。其结构及 测量原理示于图3-40。该检测器由氢氟火焰和置干火焰上、下方的圆筒状收集极及圆环发射极、测量电路等组成。两电极间加200-300V电压。未进样 时,氢氧焰中生成H.。、OH.02H及一些被激发的变体,但它们在电场中不被收集,故不产生电信号.当试样组分随载气进入火焰时,就被离子化形成正离子 和电子.在直流电场的作用下,各自向极性相反的电极移动形成电流.该电流强度为10-8-10-13A,需经高组(R)产生电压降,再放大后送入记录仪记 录。......阅读全文

氢火焰离子检测器的原理

  此种检测器的离子是通过有机化合物在氢气-空气的扩散火焰中燃烧产生的。其特点是只对含碳有机物有明显的响应,而对非烃类、惰性气体或在火焰中难电离或不电离的物质,则讯号较低或无信号,如一些氮的氧化物(NO、N2O等)、一些无机气体(SO2、NH3等)、CO2、CS2和H2O等,甲酸因氧化态较高不易在火

氢火焰离子化检测器特点

  氢火焰离子化检测器简称氢焰检测器,又称火焰离子化检测器(FID: flame ionization detector)。是用于检验氢火焰离子化的机器。  (1) 典型的质量型检测器;  (2) 对有机化合物具有很高的灵敏度;  (3) 无机气体(如N2、CO、CO2、O2)、水、四氯化碳等含氢少

氢火焰离子化检测器的结构

  (1) 在发射极和收集极之间加有一定的直流电压(100—300V)构成一个外加电场。  (2) 氢焰检测器需要用到三种气体:  N2:载气携带试样组分;  H2:为燃气;  空气:助燃气。  使用时需要调整三者的比例关系,检测器灵敏度达到最佳。  一般根据分离及分析速度的需要选择载气(氮气)的流

氢火焰离子化检测器的原理

1)当含有机物 CnHm的载气由喷嘴喷出进入火焰时,在C层发生裂解反应产生自由基 :CnHm ──→ · CH(2)产生的自由基在D层火焰中与外面扩散进来的激发态原子氧或分子氧发生如下反应:· CH + O ──→CHO+ + e(3)生成的正离子CHO+ 与火焰中大量水分子碰撞而发生分子离子反应:

氢火焰离子化检测器的原理

  1)当含有机物 CnHm的载气由喷嘴喷出进入火焰时,在C层发生裂解反应产生自由基 :  CnHm ──→ · CH  (2)产生的自由基在D层火焰中与外面扩散进来的激发态原子氧或分子氧发生如下反应:  · CH + O ──→CHO+ + e  (3)生成的正离子CHO+与火焰中大量水分子碰撞而

氢火焰离子化检测器的简介

  (1) 典型的质量型检测器;  (2) 对有机化合物具有很高的灵敏度;  (3) 无机气体(如N2、CO、CO2、O2)、水、四氯化碳等含氢少或不含氢的物质灵敏度低或不响应;  (4) 氢焰检测器具有结构简单、稳定性好、灵敏度高、响应迅速等特点;  (5) 比热导检测器的灵敏度高出近3个数量级,

氢火焰离子化检测器为什么

1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID ),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(

氢火焰离子化检测器的特点

  氢火焰离子化检测器主要特点是对几乎所有挥发性的有机化合物均有响应, 对所有径类化合物 (碳数≥3) 的相对响应值几乎相等,对含杂原子的烃类有机物中的同系物(碳数≥3)的相对响应值也 几乎相等。这给化合物的定量带来很大的方便,而且具有灵敏度高(10-13~10-10g/s) ,基流 -14 -13

氢火焰离子化检测器的性能特征

FID的特点是灵敏度高,比TCD的灵敏度高约1000倍;检出限低,可达到10~12g/s;线性范围宽,可达10~7;FID结构简单,死体积一般小于1uL,响应时间仅为1ms,既可以与填充柱联用,也可以直接与毛细管柱联用;FID对能在火焰中燃烧电离的有机化合物都有响应,可以直接进行定量分析,是目前应用

氢火焰离子化检测器的发展简介

  1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流

氢火焰离子化检测器的相关介绍

  是根据气体的导电率是与该气体中所含带电离子的浓度呈正比这一事实而设计的。一般情况下,组分蒸汽不导电,但在能源作用下,组分蒸汽可被电离生成带电离子而导电。  工作原理:由色谱柱流出的载气(样品)流经温度高达2100℃的氢火焰时,待测有机物组分在火焰中发生离子化作用,使两个电极之间出现一定量的正、负

氢火焰离子化检测器的影响因素

  气体流量  包括载气,氢气和空气的流量。  载气流量 一般使用N2作为载气,载气流量的选择主要考虑分离效能。对于一定的色谱柱和试样,要找到一个最佳的载气流速,使得柱的分离效果最好。  氢气流量 氢气流量与载气流量的比值影响氢火焰的温度以及火焰当中的电离过程。火焰温度太低,组分分子电离数目低,产生

氢火焰离子化检测器的性能特征

  FID的特点是灵敏度高,比TCD的灵敏度高约1000倍;检出限低,可达到10~12g/s;线性范围宽,可达10~7;FID结构简单,死体积一般小于1uL,响应时间仅为1ms,既可以与填充柱联用,也可以直接与毛细管柱联用;FID对能在火焰中燃烧电离的有机化合物都有响应,可以直接进行定量分析,是应用

氢火焰离子化检测器的工作原理

  1)当含有机物 CnHm的载气由喷嘴喷出进入火焰时,在C层发生裂解反应产生自由基 :  CnHm ──→ · CH  (2)产生的自由基在D层火焰中与外面扩散进来的激发态原子氧或分子氧发生如下反应:  · CH + O ──→CHO+ + e  (3)生成的正离子CHO+与火焰中大量水分子碰撞而

氢火焰离子化检测器的性能特征

  FID的特点是灵敏度高,比TCD的灵敏度高约1000倍;检出限低,可达到10~12g/s;线性范围宽,可达10~7;FID结构简单,死体积一般小于1uL,响应时间仅为1ms,既可以与填充柱联用,也可以直接与毛细管柱联用;FID对能在火焰中燃烧电离的有机化合物都有响应,可以直接进行定量分析,是应用

氢火焰离子化检测器的影响因素

  气体流量  包括载气,氢气和空气的流量。  1、载气流量 一般使用N2作为载气,载气流量的选择主要考虑分离效能。对于一定的色谱柱和试样,要找到一个最佳的载气流速,使得柱的分离效果最好。  2、氢气流量 氢气流量与载气流量的比值影响氢火焰的温度以及火焰当中的电离过程。火焰温度太低,组分分子电离数目

氢火焰离子化检测器的工作原理

氢火焰离子化检测器是以氢气与空气燃烧生成的火焰为能源,使有机物发生化学电离,并在电场作用下产生电信号来进行检测的。在当载气携带被测组分从色谱柱流出后与氢气(必要时还有尾吹气)按照一定的比例混合后一起从喷嘴喷出,并在喷嘴周围空气(助燃气)中燃烧,以燃烧所产生的高温(约2100℃)火焰为能源,被测组分在

氢火焰离子化检测器的结构相关简介

  (1) 在发射极和收集极之间加有一定的直流电压(100—300V)构成一个外加电场。  (2) 氢焰检测器需要用到三种气体:  N2:载气携带试样组分;  H2:为燃气;  空气:助燃气。  使用时需要调整三者的比例关系,检测器灵敏度达到最佳。  一般根据分离及分析速度的需要选择载气(氮气)的流

简述氢火焰离子化检测器的性能特征

  FID的特点是灵敏度高,比TCD的灵敏度高约1000倍;检出限低,可达到10~12g/s;线性范围宽,可达10~7;FID结构简单,死体积一般小于1uL,响应时间仅为1ms,既可以与填充柱联用,也可以直接与毛细管柱联用;FID对能在火焰中燃烧电离的有机化合物都有响应,可以直接进行定量分析,是应用

氢火焰离子化检测器的结构及原理

  结构  (1) 在发射极和收集极之间加有一定的直流电压(100—300V)构成一个外加电场。  (2) 氢焰检测器需要用到三种气体:  N2:载气携带试样组分;  H2:为燃气;  空气:助燃气。  使用时需要调整三者的比例关系,检测器灵敏度达到最佳。  一般根据分离及分析速度的需要选择载气(氮

氢火焰离子化检测器有哪些性能特点

(1) 典型的质量型检测器;(2) 对有机化合物具有很高的灵敏度;(3) 无机气体(如N2、CO、CO2、O2)、水、四氯化碳等含氢少或不含氢的物质灵敏度低或不响应;(4) 氢焰检测器具有结构简单、稳定性好、灵敏度高、响应迅速等特点;(5) 比热导检测器的灵敏度高出近3个数量级,检测下限可达10-1

关于氢火焰离子化检测器的结构介绍

  (1) 在发射极和收集极之间加有一定的直流电压(100—300V)构成一个外加电场。  (2) 氢焰检测器需要用到三种气体:  N2 :载气携带试样组分;  H2 :为燃气;  空气:助燃气。  使用时需要调整三者的比例关系,检测器灵敏度达到最佳。  一般根据分离及分析速度的需要选择载气(氮气)

氢火焰离子化检测器有哪些优缺点

  氢火焰离子化检测器是环境检测项目中常常用到的检测器。   一、氢火焰离子化检测器构造   氢火焰离子化检测器:简称FID,其主要部件包括喷嘴、极化极、收集极、点火线圈、气体通道、金属外罩等。金属外罩一般为不锈钢圆筒,它将喷嘴、极化极、收集极、点火线圈密封起来,留一出口排出燃烧物。   二、氢火焰

氢火焰离子化检测器有哪些性能特点

(1) 典型的质量型检测器;(2) 对有机化合物具有很高的灵敏度;(3) 无机气体(如N2、CO、CO2、O2)、水、四氯化碳等含氢少或不含氢的物质灵敏度低或不响应;(4) 氢焰检测器具有结构简单、稳定性好、灵敏度高、响应迅速等特点;(5) 比热导检测器的灵敏度高出近3个数量级,检测下限可达10-1

氢火焰检测器的原理

火焰监测装置一般由探头、电源、电压放大器、检测屏、逻辑屏等部件组成。 其工作原理是:由探头探测燃烧火焰的强度和脉动频率,并将探测到的火焰信号转换为电源信号,传送到信号处理中心

影响氢火焰离子化检测器使用的因素介绍

  一、气体流量  包括载气,氢气和空气的流量。  载气流量 一般使用N2作为载气,载气流量的选择主要考虑分离效能。对于一定的色谱柱和试样,要找到一个最佳的载气流速,使得柱的分离效果最好。  氢气流量 氢气流量与载气流量的比值影响氢火焰的温度以及火焰当中的电离过程。火焰温度太低,组分分子电离数目低,

氢火焰离子化检测器的流动相是什么

氢火焰离子化检测器的流动相是氢气。FID是一种常用于气相色谱仪的检测器,用于检测有机化合物的含量。在FID中,待测样品通过气相色谱柱分离后,进入到FID检测器。在FID中,进样的气体样品与氢气一起通过一个燃烧器,是一个氢气/空气混合燃烧器。在燃烧器中,样品中的有机化合物与氢气发生燃烧反应,产生离子和

氢火焰离子化检测器(flame-ionization-detector,FID)结构

金属圆筒做外壳,内部装有燃烧的喷嘴,载气及组分从色谱柱流出后与氢气(必要时还有尾吹气)一起从喷嘴逸出并与喷嘴周围的空气燃烧。喷嘴附近装有发射极和收集极,两极间形成电场。

氢火焰离子化检测器(flame-ionization-detector,FID)原理

FID是以氢气在空气中燃烧所生成的热量为能源,组分燃烧时生成离子,同时在电场作用下形成离子流。组分在火焰中生成离子的机理,至今不是很清楚。  工作条件:温度一般应在150℃以上以防积水;氢气:氮气:空气=1:1:10。

氢火焰离子化检测器的原理及性能特征

  原理  1)当含有机物 CnHm的载气由喷嘴喷出进入火焰时,在C层发生裂解反应产生自由基 :  CnHm ──→ · CH  (2)产生的自由基在D层火焰中与外面扩散进来的激发态原子氧或分子氧发生如下反应:  · CH + O ──→CHO+ + e  (3)生成的正离子CHO+与火焰中大量水分