Antpedia LOGO WIKI资讯

中科大Nature子刊:一种特殊短肽可调控细胞自噬行为

记者近日从中国科学技术大学获悉,该校生命科学学院教授温龙平研究组发现一种短肽,能够调控稀土纳米材料所导致的细胞自噬行为,从而大大降低纳米材料的毒副作用,并提高对肿瘤细胞的杀伤效应。相关论文日前在线发表于《自然―材料》杂志。 细胞自噬是细胞利用溶酶体降解受损的细胞器、大分子物质和长寿命蛋白质以维护细胞自稳态的关键细胞生物学过程。该过程与多种重大疾病的发生、发展及治疗息息相关。细胞自噬研究已成为继细胞凋亡之后又一迅猛发展的生物学研究领域。 近几年的研究表明,吸入或以诊疗为目的而进入体内的许多纳米颗粒,可引发细胞自噬并促使细胞死亡。这种纳米颗粒引发的细胞自噬是一把双刃剑,一方面其可在正常细胞中引发毒性,对此应加以规避;另一方面,其在特定细胞中可帮助治疗疾病,如增强癌症的放化疗和免疫治疗效果,治疗神经退行性疾病,如帕金森氏症等。因此,有效地调控由纳米颗粒引发的自噬效应,对纳米材料及纳米器件的......阅读全文

纳米材料颗粒越细微转动越活跃

  纳米材料有什么样的形变机制?高压先进科研中心(上海)陈斌研究员及其合作团队研究发现,材料颗粒越细微,转动越活跃。《美国科学院院报》近日刊发了这一最新研究成果。   陈斌及其团队引入地球物理领域的实验方法,成功探测到了超细纳米晶体的塑性形变,进而发现材料颗粒越细微,转动越活跃。这一发现对于研究结

实锤!纳米颗粒靶向可有效识别肿瘤

  在纳米颗粒上装载识别配体,对肿瘤进行主动识别,从而实现靶向治疗是肿瘤治疗的重要研究方向,然而近年来这种方式的有效性越发受到质疑。我国科研人员最新研究表明,利用纳米颗粒靶向识别肿瘤是有效的,但其效果受靶向修饰模式影响明显。  开展这一研究的科研人员为中国科学院武汉病毒研究所李峰研究员与中国科学院生

纳米刀,精确击穿肿瘤细胞

  在杀死肿瘤细胞同时,如何最大程度保护周围组织不受损伤?日前,在中国人民解放军总医院(301医院)召开的国际纳米刀技术专题学术会议上,该院肝胆外科副主任医师陈永亮教授团队与美国肯塔基州路易斯维尔大学团队演示的一种纳米刀肿瘤治疗新技术,让这些变成现实。  肿瘤细胞的细胞膜在高压电流作用下发生穿孔,从

新型纳米材料可安全抑制肿瘤生长

  癌症病人在化疗中通常需要使用高毒性的化疗药物。由于药物的非特异性,在杀死癌细胞的同时,同样杀死正常细胞,损害正常的组织和器官。事实上,70%以上接受化疗的癌症患者,最后死于药物毒性。是否可以使用对正常细胞和组织无毒的纳米材料或分子,让这些材料或分子进入肿瘤后才产生毒性,或引起毒害作用?最近,中科

科学家探测到纳米材料颗粒旋转

  由高压先进科研中心(上海)研究员陈斌领导的团队开发了一项新技术,可探测到应力下超细纳米材料的颗粒旋转。该发现对于研究结构材料的强度和寿命以及探索矿物在地球内部的形成机制等具有重要意义。2月17日,该成果发表于美国《国家科学院院刊》。   虽然粗晶材料的变形已被广泛研究,但研究人员此前一直

利用纳米颗粒跟踪分析(NTA)技术对药物输送纳米颗粒...

利用纳米颗粒跟踪分析(NTA)技术对药物输送纳米颗粒进行直接观察、测定大小和计数简介 纳米颗粒在药物输送中的应用持续迅猛发展。 纳米颗粒可提供优良的药代动力学特性、长效和缓释以及特定细胞、组织或器官的靶定。 可利用的能用于疾病治疗的新生物活性化合物的发现速度在不断递减,这推动了人们对纳米颗粒

纳米颗粒跟踪分析技术对药物输送纳米颗粒的观察

纳米颗粒在药物输送中的应用持续迅猛发展。 纳米颗粒可提供优良的药代动力学特性、长效和缓释以及特定细胞、组织或器官的靶定。 可利用的能用于疾病治疗的新生物活性化合物的发现速度在不断递减,这推动了人们对纳米颗粒药物输送的关注。 每年进入市场的新药越来越少,利用纳米颗粒的多用途和多功能结构进行药物输送的兴

纳米中心发现纳米尺寸药物颗粒具更优越的肿瘤渗透效应

  纳米颗粒药物载体在化疗药物输送系统的发展及建立中具有很大优势,已被广泛应用于癌症临床治疗的一些市售纳米药物,如Doxil®(包载阿霉素的纳米脂质体),Abraxane®(包载紫杉醇的白蛋白纳米颗粒)等,正是由于利用纳米技术增强了药物溶解度,延长了药物体内循环时间并且改善了药物体内分布,从而在临床

Nature子刊:外泌体仿生纳米颗粒,有效杀伤肿瘤干细胞

  肿瘤干细胞(Cancer stem cells, CSCs),对肿瘤的存活、增殖、转移及复发有着重要作用。从本质上讲,肿瘤干细胞通过自我更新和无限增殖维持着肿瘤细胞群的生命力。  肿瘤干细胞的运动和迁徙能力使肿瘤细胞的转移成为可能,肿瘤干细胞可以长时间处于休眠状态并具有多种耐药分子,从而对杀伤肿

智能纳米颗粒自控温“烫死”癌细胞

   大连理工大学教授吴承伟团队研发出一种新智能纳米颗粒,不仅可追踪癌细胞,还能自我调节温度,自动升温到可杀死癌细胞的温度,而在杀死癌细胞后,会在伤害健康组织前自动散去热量,实现了自控温“烫死”癌细胞。相关成果近日发表于《纳米尺度》杂志。   研究发现肿瘤细胞在40℃~45℃会凋亡,而正常细胞温度