使用毫米波雷达套件快速开发精密目标检测设计(一)

设计人员承受着不断的竞争压力,需要实现更小,更精确,检测范围更长的运动传感器,以应用于智能建筑,工厂自动化,运输和无人机等各种行业。毫米波(mmWave)技术正在成为一种有吸引力的运动检测选项,而mmWave技术的新设计师则发现潜在的雷达前端和高性能信号链具有挑战性。 为了解决这些问题,mmWave设备和相关的开发套件现已上市,使设计人员能够快速部署复杂而精确的运动检测系统。 本文将讨论运动检测系统的扩展作用,并解释为什么mmWave是范围和准确性的不错选择。然后,它将介绍一个合适的工具包,并说明如何启动和运行它。运动检测的扩展作用 运动检测已成为广泛应用中越来越重要的功能。除了在智能建筑和家庭产品中用作便利功能外,它还在汽车和工业应用中提供了关键的安全功能。在越来越多的应用中,扩大范围和精度至关重要,这要避免使用围绕无源红外传感器或飞行时间系统构建的传统方法。 因此,调频连续波(FMCW)毫米波雷达技术受到越来越多的关注。它使......阅读全文

一文读懂毫米波技术与毫米波芯片

毫米波通信、毫米波雷达等与毫米波相关的概念正快速出现在我们的日常生活中,但对于毫米波技术,并非所有人均有所了解。为极大化普及毫米波相关概念,本文中将对毫米波技术以及毫米波芯片加以讲解,以增进大家对毫米波的认知深度,以下为正文部分。由于毫米波器件的成本较高,之前主要应用于军事。然而随着高速宽带

毫米波GAP波导

The gap waveguide is built up of two parts: a structured metal surface and a flat metal surface being placed in close proximity to one another. Th

什么是毫米波

问题一:毫米波与微波的区别是什么 毫米波,它位于微波与远红外波相交叠的波长范围,因而兼有两种波谱的特点。问题二:什么是毫米波? 毫米波 (milli钉eter wave ):波长为1~10毫米的电磁波称毫米波,它位于微波与远红外波相交叠的波长范围,因而兼有两种波谱的特点。毫米波的理论和技术分别是微波

毫米波与太赫兹技术

今日推荐文章作者为东南大学毫米波国家重点实验室主任、IEEE Fellow 著名毫米波专家洪伟教授,本文选自《毫米波与太赫兹技术》,发表于《中国科学: 信息科学》2016 年第46卷第8 期——《信息科学与技术若干前沿问题评述专刊》,射频百花潭配图。引言随着对电磁波谱的不断探索, 人类对电子学和光学

毫米波与微波的区别

1、性质不同毫米波它位于微波与远红外波相交叠的波长范围,因而兼有两种波谱的特点。毫米波的理论和技术分别是微波向高频的延伸和光波向低频的发展。微波的基本性质通常呈现为穿透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。对于水和食物等就会吸收微波而使自身发热。而对金属类东西,则会反

5G-mmWave毫米波频谱

毫米波依靠超高的 mmWave 频率的速度和容量为 5G 应用提供超强动力。   毫米波 5G,也被称为 mmWave——是下一代移动应用基础。我们将解释它是什么,以及在需要高容量、低延迟网络的地区,它将如何影响 5G 网络。   下一代 5G 网络不仅将在大范围内提供无处不在

毫米波收发机芯片如何实现?

  商用的毫米波收发机芯片会使用CMOS(CMOS=complementary metal-oxide-semiconductor,指用半导体-氧化层-金属堆叠形成半导体器件的工艺,是最常用的集成电路制造工艺)工艺,这一方面为了能够和数字模块集成,另一方面为了节省成本。  毫米波收发机芯片的结构和传

毫米波技术应用及其进展(一)

1)极宽的带宽。通常认为毫米波频率范围为26.5~300GHz,带宽高达273.5GHz。超过从直流到微波全部带宽的10倍。即使考虑大气吸收,在大气中传播时只能使用四个主要窗口,但这四个窗口的总带宽也可达135GHz,为微波以下各波段带宽之和的5 倍。这在频率资源紧张的今天无疑极具吸引力。2)波

毫米波通信技术应用介绍(一)

An Introduction to Millimetre Wave TechnologyWith users ranging from enterprise level data centres to single consumers with smart phones requiring

毫米波通信技术应用介绍(二)

Campus & Enterprise Facility NetworksMillimetre Wave Wireless Networks are very suited to both long term and short term solutions where organisati

毫米波与太赫兹技术(四)

4.2、太赫兹天线随着对太赫兹技术研究的深入,太赫兹天线也逐渐成为研究热点。太赫兹频段相比微波毫米波频段有着更高的工作频率,对应的波长也短很多。由于天线尺寸与波长的相关性,太赫兹天线具有尺寸小的天然优势,但也对加工制作带来了挑战。类似于低频段通信的天线需求,太赫兹天线也分全向天线、定向天线以及多波束

国产智慧交通毫米波雷达发布

7月27日,第二十四届中国高速信息化大会暨技术产品博览会在湖南长沙开幕,本次大会由中国公路学会主办,主题为“数字化·网络化·智慧化”。 《中国科学报》从大会技术论坛获悉,一款基于国产自主核心MMIC雷达芯片研发的高性能毫米波交通雷达产品发布,解决了同类产品核心元器件被“卡脖子”的难题。该雷

毫米波与太赫兹技术(一)

今日推荐文章作者为东南大学毫米波国家重点实验室主任、IEEE Fellow 著名毫米波专家洪伟教授,本文选自《毫米波与太赫兹技术》,发表于《中国科学:信息科学》2016 年第46卷第8 期——《信息科学与技术若干前沿问题评述专刊》。摘要:本文概要介绍了毫米波与太赫兹技术的研究现状,并根据国内外发展趋

毫米波技术应用及其进展(二)

3毫米波技术基础研究的进展 毫米波技术应用的发展是建立在毫米波元器件发展的基础上的。应用的需要又反过来推动了元器件的发展。同时材料、工艺和计算机辅助设计的发展也为元器件的发展创造了条件。这里介绍部分元器件的发展情况。 3.1半导体器件 在毫米波系统中应用的半导体器件有混频器、低噪声放大器

毫米波与太赫兹技术(二)

1.3 硅基毫米波芯片硅基工艺传统上以数字电路应用为主。随着深亚微米和纳米工艺的不断发展,硅基工艺特征尺寸不断减小,栅长的缩短弥补了电子迁移率的不足,从而使得晶体管的截止频率和最大振荡频率不断提高,这使得硅工艺在毫米波甚至太赫兹频段的应用成为可能。国际半导体蓝图协会(International

毫米波太赫兹波导法兰定义

Waveguide & Flange DesignationsThis reference is about rectangular electromagnetic waveguides at millimeter wave / THz frequencies. The table belo

毫米波与太赫兹技术(三)

1.3 窄带太赫兹连续波源窄带太赫兹辐射源的目标是产生连续的线宽很窄的太赫兹波。常用的方法包括:a) 利用电子学器件设计振荡器,尤其是以亚毫米波振荡器为基础,提高振荡器的工作频率,以设计实现适合太赫兹频段的振荡器。由于这一特点,目前报道的太赫兹源的工作频率主要集中在较低的太赫兹频段。但是,在此基

意大利电信成立毫米波实验室

  意大利电信近日宣布成立一个毫米波(mmWave)频段实验室,用于研究毫米波在5G网络中的应用。意大利电信是欧洲第一家开设毫米波实验室的电信运营商。  这个位于都灵的实验室包括远场紧凑天线测试系统和球面近场测试系统。意大利电信可使用这一实验室评估6GHz到100GHz频段的性能。  “5G能够支持

踢开毫米波技术商用“绊脚石”

原文地址:http://news.sciencenet.cn/htmlnews/2021/3/454964.shtm 毫米波频段正成为宽带卫星通信、5G移动通信发展的“黄金”频段,但解决毫米波无线通信传播距离受限成为难题。科学家发现,大规模相控阵是解决上述问题的核心关键技术,但传统毫米波相控阵因

激光雷达与毫米波雷达对比

激光雷达是一种采用非接触激光测距技术的扫描式传感器,其工作原理与一般的雷达系统类似,通过发射激光光束来探测目标,并通过搜集反射回来的光束来形成点云和获取数据,这些数据经光电处理后可生成为精确的三维立体图像。采用这项技术,可以准确的获取高精度的物理空间环境信息,测距精度可达厘米级,因此,该项技术成为汽

毫米波,距离我们还有多远?-(二)

▉ 毫米波的应用场景   我们先来了解一下毫米波的应用场景,看看它到底适合部署在哪些场所。   毫米波的大带宽、低时延、弱覆盖特点,决定了它主要适合三类场景:   第一类,是密集人群超大业务流量区域的热点覆盖。例如车站、机场等交通枢纽,体育场、商场、剧院等人群集中区域。

毫米波,距离我们还有多远?-(一)

根据预测,到今年年底,国内5G基站的数量将可能达到70万个。   就在5G建设如火如荼的同时,随着R16版本的冻结,人们逐渐将关注目光放在5G下一阶段关键技术上。这其中,就包括号称5G杀手锏的毫米波技术。 我们知道,3GPP定义的5G无线电频段范围有2个,分别为FR1频段和F

加速发展的毫米波/太赫兹频域(二)

II 微加工制造技术真空电子器件最大的问题是手工制造和对中,尚未实现批量制造技术。要实现毫米波和太赫兹频段的开拓,必须解决真空电子器件的批量制造问题。真空电子器件在历史发展上,本来就属于批量制造产品,否则它也不可能在上世纪构建完整的信息社会。当时的小型化三、四极管都是年产几千万支的产品。显示器件(C

毫米波辐射可有效阻止癌细胞再生

  以色列科研人员发现用毫米波照射癌细胞将阻止其再生,而又不破坏细胞本身,这一发现为治癌放射疗法提供了新途径。在特拉维夫刚刚结束的第三届国际IEEE微波、通讯、天线和电子系统会议上,来自以色列阿里埃勒大学的科研人员宣布了他们的这一发现,并称其研究已得到欧洲有关机构的资助。   阿里埃勒大学的亚哈罗

毫米波收发器系统硬件介绍(三)

毫米波电站NI 3647与NI 3657模块化发射与接收无线电站能为NI毫米波收发器系统提供高品质的RF信号。 NI 3647毫米波电站发射器的工作频率范围为 71 - 76 GHz;输出功率高达 25 dBm * 与宽带高达2 GHz RF。 此发射器可与71 - 76 GHz 的 NI

激光雷达与毫米波雷达的区别

说起激光雷达和毫米波雷达,相信业内人士并不陌生,激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统。而毫米波雷达是指工作在毫米波波段探测的雷达。毫米波实质上就是电磁波。毫米波的频段比较特殊,其频率高于无线电,低于可见光和红外线,频率大致范围是10GHz—200GHz。这是一个非常适合车载领

毫米波收发器系统硬件介绍(二)

PXI Express机箱原型验证系统以PXIe-1085机箱为基础。 机箱包含不同的处理模块,并提供电源、互连功能以及定时和同步基础设施。 这款18槽机箱的每个插槽均搭载了PCI Express(PCIe)第3代技术,适用于高吞吐量和低延迟应用。 机箱可提供4 GB/s的单槽带宽和24 G

加速发展的毫米波/太赫兹频域(一)

由于微波频段的拥挤,近年来国内外信息技术界都更加关注毫米波和太赫兹频域的利用和发展[1-3]。毫米波频域的应用可追朔到上世纪70年代,美国Milstar通信卫星正式使用Ka波段毫米波技术,使毫米波技术应用取得突破。近年来,高速数据通信和5G移动通信的发展,要求更高的工作频率和更宽的频带宽度。促使我们

激光雷达和毫米波雷达的区别

激光雷达与毫米波雷达的具体区别如下:从工作原理上来讲,激光雷达和毫米波雷达基本类似,都是利用回波成像来构显被探测物体的,就相当于人类用双眼探知而蝙蝠是依靠超声波探知的区别。不过激光雷达发射的电磁波是一条直线,主要以光粒子发射为主要方法,而毫米波雷达发射出去的电磁波是一个锥状的波束,这个波段的天线主要

毫米波雷达的工作原理及优缺点

  所谓的毫米波是无线电波中的一段,我们把波长为1~10毫米的电磁波称毫米波,它位于微波与远红外波相交叠的波长范围,因而兼有两种波谱的特点。毫米波的理论和技术分别是微波向高频的延伸和光波向低频的发展。  所谓的毫米波雷达,就是指工作频段在毫米波频段的雷达,测距原理跟一般雷达一样,也就是把无线电波(雷