Antpedia LOGO WIKI资讯

第八届微全分析系统学术会议生物分离专场(上)

2013年5月17日,由中国化学会主办、厦门大学承办、复旦大学、浙江大学协办的第八届全国微全分析系统学术会议、第三届全国微纳尺度生物分离分析学术会议暨第五届国际微化学与微系统学术会议在美丽的海滨城市厦门隆重召开。以下是生物分离专场精彩报告。北京大学 刘虎威教授 来自北京大学的刘虎威教授为我们带来了题为《DART质谱在线耦合毛细管电泳及胶束电动毛细管色谱技术》的精彩报告,在报告中刘教授介绍了在工作中实现了电泳实时直接分析质谱(DART-MS)与毛细管电泳(CE)的耦合。从毛细管电泳(CE)洗脱的分析物DART和生产转移到亚稳态氦通量直接电离MS的检测,从而实现在线分离、同时检测。 CE-DART-MS可以比传统的CE-ESI-MS承受高浓度的洗涤剂和盐,避免了收集毛细管电泳流出物和接口清洗的难题,它简化了实验程序,缩短分析时间。该毛细管区带电泳技术性能已经得到成功验证。毛细管区域凝胶电泳和胶......阅读全文

毛细管电泳-分离因素-分离电压

分离电压在CE中,分离电压也是控制电渗的一个重要参数。高电压是实现CE快速、高效的前提,电压升高,样品的迁移加大,分析时间缩短,但毛细管中焦耳热增大,基线稳定性降低,灵敏度降低;分离电压越低,分离效果越好,分析时间延长,峰形变宽,导致分离效率降低。因此,相对较高的分离电压会提高分离度和缩短分析时间,

毛细管电泳法的毛细管电泳的分离模式

毛细管区带电泳(Capillary Zone Electrophoresis, CZE)最常见的模式,用以分析带电溶质。样品中各个组分因为迁移率不同而分成不同的区带。为了降低电渗流和吸附现象,可将毛细管内壁做化学修饰。毛细管凝胶电泳(Capillary Gel Electrophoresis,CGE

毛细管电泳-分离因素-温度

温度 温度影响分离重现性和分离效率,控制温度可以调控电渗流的大小。温度升高,缓冲液粘度降低,管壁硅轻基解离能力增强,电渗速度变大,分析时间减短,分析效率提高。但温度过高,会引起毛细管柱内径向温差增大,焦耳热效应增强,柱效降低,分离效率也会降低。

毛细管电泳的分离模式

   (1)毛细管区带电泳,用以分析带电溶质(为了降低电渗流和吸附现象,可将毛细管内壁涂层)。  (2)毛细管凝胶电泳,在毛细管中装入单体,引发聚合形成凝胶,主要用于测定蛋白质、DNA等大分子化合物。另有将聚合物溶液等具有筛分作用的物质,如葡聚糖、聚环氧乙烷,装人毛细管中进行分析,称毛细管无胶筛分电

毛细管电泳的分离模式

毛细管区带电泳(Capillary Zone Electrophoresis, CZE)最常见的模式,用以分析带电溶质。样品中各个组分因为迁移率不同而分成不同的区带。为了降低电渗流和吸附现象,可将毛细管内壁做化学修饰。毛细管凝胶电泳(Capillary Gel Electrophoresis,CGE

毛细管电泳影响分离因素

  毛细管电泳影响分离因素  1.缓冲液  缓冲试剂的选择主要由所需的pH决定,在相同的pH下,不同缓冲试剂的分离效果不尽相同,有的可能相差甚远。CE中常用的缓冲试剂有:磷酸盐、硼砂或硼酸、醋酸盐等。  缓冲盐的浓度直接影响到电泳介质的离子强度,从而影响Zeta电势,而Zeta电势的变化又会影响到电

毛细管电泳-分离因素-pH值

pH值缓冲体系pH的选择依样品的性质和分离效率而定,是决定分离成败的一大关键。不同样品需要不同的pH分离条件,控制缓冲体系的pH值,一般只能改变电渗流的大小。pH能影响样品的解离能力,样品在极性强的介质中离解度增大,电泳速度也随之增大,从而影响分离选择性和分离灵敏度。pH还会影响毛细管内壁硅醇基的质

高效毛细管电泳分离模式

分离类型八种分离类型,介绍常用的几种;根据试样性质不同,采用不同的分离类型;每种机理的选择性不同;一,毛细管区带电泳capillary zone electrophoresis ,CZE带电粒子的迁移速度=电泳和电渗流速度的矢量和.正离子:两种效应的运动方向一致,在负极最先流出;中性粒子:无电泳现象

毛细管电泳的分离分析方法

  CE 是在传统的电泳技术基础上于本世纪60 年代末由Hjerten 发明的,其利用小的毛细管代替传统的大电泳槽,使电泳效率提高了几十倍。此技术从80 年代以来发展迅速,是生物化学分析工作者与生化学家分离、定性多肽与蛋白类物质的有利工具。CE 根据应用原理不同可分为以下几种;毛细管区带电泳Capi

毛细管电泳的分离电压介绍

  在CE中,分离电压也是控制电渗的一个重要参数。高电压是实现CE快速、高效的前提,电压升高,样品的迁移加大,分析时间缩短,但毛细管中焦耳热增大,基线稳定性降低,灵敏度降低;分离电压越低,分离效果越好,分析时间延长,峰形变宽,导致分离效率降低。因此,相对较高的分离电压会提高分离度和缩短分析时间,但电