Antpedia LOGO WIKI资讯

物理所光镊驱动Janus粒子可控旋转研究取得进展

上个世纪90年代起,随着纳米科技走进人们的视线,宏观世界中的器件走向微纳世界成为世界潮流。微型马达由于能广泛应用于微机电、微流、生物医药等领域而倍受青睐,而光场、电场和磁场常常作为动力来智能地操控微型马达。传统的光驱动的旋转微马达可以通过向具有双折射性质的物体传递角动量或向形状不对称的物体传递动量来实现。但是这些方法要么需要精巧的设计和精湛的微加工工艺来实现,要么需要对光束形态进行复杂的修饰。找到一种操控简单,可大量制备的旋转微马达是有待解决的技术难题。最近,中国科学院物理研究所/北京凝聚态物理国家实验室(筹)软物质物理实验室研究员陈科课题组与光物理实验室研究员李志远课题组合作,找到一种操控简单、可大量制备的Janus粒子,并实现了这类Janus粒子在激光光束强聚焦形成的光阱中稳定可控的旋转。此外,拓展了几何光学理论,揭示了对称性破缺在Janus粒子可控旋转中的重要作用。相关工作发表在ACS Nano 9, 10844-10......阅读全文

微型调速马达的原理与特点

   微型减速电机是微型精密减速箱(也叫齿轮箱)与微型电动机组装成一体的一种电动机。    用户在选择电动机时,往往会因为单体电动机转速过高或扭力太小而不能满足其需要。    这时,选择微型减速电机是合适和直接的方案。    微型减速电机在日常生活中应用及其广泛,特别是日常用品中的小工具。

紫外检测器单色器光栅马达机械驱动保养简介

  光栅马达机械驱动由马达、丝杆及导杆组成。仪器使用3年后,机械驱动部分润滑油干涸,其表面形成一层油污。使马达受力增大,严重的会造成马达驱动电路损坏。保养步骤:取出控制盒.取下单色器顶盖。用无水乙醇或丙酮将丝杆及导杆残存的油污清洗干净,待其干燥后,分别在丝杆及导杆滴上数滴轻质润滑油,反复转动马达,使

科学家提出高效驱动微型引擎概念

把球推上山坡需要能量。量子引擎或能通过反复测量实现同样的工作。 图片来源:Michael Blann/《科学》  要测量一个原子,不可能不扰动它,至少根据量子力学是这样的。但两名物理学家报告称,这一效应似乎有点麻烦,但它可以驱动一个微型引擎以近乎100%的效率运行——远高于汽车

科学家提出高效驱动微型引擎概念

  要测量一个原子,不可能不扰动它,至少根据量子力学是这样的。但两名物理学家报告称,这一效应似乎有点麻烦,但它可以驱动一个微型引擎以近乎100%的效率运行——远高于汽车引擎的效率。目前,这一“测量引擎”仍是纯假设,但物理学家称或许未来真能造出一款这样的引擎。  “这是个非常好的想法。”法国蒙特邦奥圣

光驱动的二硫化钼胶体马达实现了“人形奔跑”

  自然界中,生物集群可以精准而快速地调整其形态以适应复杂多变的环境。例如,海洋中鱼群可以随时变换其形态以有效躲避鲨鱼的攻击。那么人工合成的胶体马达是否也能够响应环境的变化而精准调整其集群的形态呢?近日,哈尔滨工业大学贺强教授研究团队设计并制备了紫外光驱动的二硫化钼胶体马达,实现了光驱动纳米尺度胶体

首个DNA材料制成的纳米马达面世 有望用于驱动化学反应

科技日报讯 (记者刘霞)德国科学家在最新一期《自然》杂志上发表论文称,他们首次成功使用DNA折叠法制造出了一款分子马达。这种由遗传物质制成的新型纳米马达可以自我组装并将电能转换为动能,可以开关,还能通过施加电场控制其转速和旋转方向,未来有望用于驱动化学反应。   汽车、钻机等机器内的马达能帮人们完成

靠胃酸驱动的微型电池研制成功

  美国麻省理工学院和布莱根妇女医院的研究人员开发出一种依靠胃酸驱动的伏打电池,可产生足够电力供微型传感器或药物输送设备运行。他们在2月6日出版的《自然·生物医学工程》杂志上撰文称,这一新型电源更安全廉价,有望成为目前体内传感器或药物输送设备所用电池的替代品。   医生们常用植入式医疗设备进行生

意大利在细菌驱动微型机研究上取得进展

   由意大利国家研究委员会纳米技术研究院和罗马第一大学物理系组成的研究团队利用纳米技术,在细菌驱动微型机研究上取得进展,成果发布在《自然-通讯》杂志上。   研究人员发现,某些转基因细菌可以被用作为微型机里的小型“推进器”,速度可由光线控制。研究表明,转基因细菌可以产生变形细菌视紫红质(Prote

力学所在非常规形状微马达驱动机理研究中取得进展

  能够自主运动的微纳米机器在过去的10多年间得到了快速发展,而作为关键的动力部件,关于微纳马达(能够将周围环境中的能量转化为自身运动的活性微纳颗粒)的研究也逐渐深入。其中,微气泡驱动的微马达作为驱动效率最高的一种,其驱动机理引起了科学家的广泛关注。  不同于以往研究局限于规则球型微马达,研究团队通

力学所在非常规形状微马达驱动机理研究中取得进展

  能够自主运动的微纳米机器在过去的10多年间得到了飞速的发展。而作为关键的动力部件,微纳马达(能够将周围环境中的能量转化为自身运动的活性微纳颗粒)的研究也逐渐深入。其中,微气泡驱动的微马达作为驱动效率最高的一种,其驱动的机理引起来广泛的研究兴趣。  不同于以往研究局限于规则球型微马达,研究团队通过