荧光光谱仪的在生物领域的应用

该领域主要用于临床测定生物样品中某些成分的含量,生物技术及免疫技术的分析等,如脱氧核糖和脱氧核糖核酸的含量测定、DNA、抗体、抗原等各方面的研究。在此领域中主要时利用各种荧光探针进行分析检测,主要分为生物纳米荧光探针和生物非纳米荧光探针。 其中纳米技术的兴起,打开了荧光分析的又一个新的领域。由于纳米材料具有很好的荧光性,宽激发,窄发射等优良的光谱特点,使其成为荧光分析中的重要的研究对象,引起了研究者的兴趣。......阅读全文

荧光光谱仪的荧光分析特点

  (1)荧光分析的主要特点是灵敏度高、选择性好,荧光分析的灵敏度要比吸收光谱测量高2-3个数量级。分光光度法通常在 10-7 级,而荧光的灵敏度达10-9。  (2)强选择性强,荧光物质具有两种特征光谱:激发光谱和吸收光谱,相对于分光光度法单一的吸收光谱来说,荧光光谱可根据激发光谱和发射光谱来鉴定

如何提高荧光光谱仪接收荧光?

如何提高荧光光谱仪接收到的荧光?对于一些物质来说,产生荧光的能力是非常弱,以至一些普通探测器都无法响应。为了使荧光光谱仪能够接收到更多的荧光,往往采用以下几个措施:1、提高激发光的强度:可以用激光器来代替卤素灯源,激光器的功率密度往往比卤素灯高的多。使用该方法,根据激光器功率的不同,荧光有几倍到几个

荧光光谱仪同步荧光分析简介

  同步荧光分析。它与常用荧光测定最大的区别是同时扫描激发和发射两个单色器波长,由测得的荧光强度信号与对应的激发波长(或发射波长)构成光谱图,即同步荧光光谱。步荧光分析具有光谱简单,谱带窄、分辨率高、光谱重叠少等优点,可提高选择性,减少散射光等的影响,非常适合多组分混合物的分析,在环境、药物、临床、

荧光光谱仪和稳态荧光光谱仪有什么区别

所用光源一般为氙灯,其激发为连续波,对于荧光物质来说其测得发射和激发可称作稳态荧光光谱,如光源为脉冲激光的荧光光谱仪可称作瞬态荧光光谱,在这里荧光光谱仪可能范围更广一些

荧光光谱仪原理

荧光分析法的基本原理处于基态的被测物质的分子在吸收适当能量,如光、化学、物理能后,其共价电子从成键分子轨道或非键分子轨道跃迁到反键分子轨道上去,形成分子激发态。分子激发态不稳定,将很快衰变到基态。在分子激发态返回到基态的同时常伴随着光子的辐射。这种现象就是发光现象。荧光则属于分子的光致发光现象。二、

荧光光谱仪原理

荧光分析法的基本原理处于基态的被测物质的分子在吸收适当能量,如光、化学、物理能后,其共价电子从成键分子轨道或非键分子轨道跃迁到反键分子轨道上去,形成分子激发态。分子激发态不稳定,将很快衰变到基态。在分子激发态返回到基态的同时常伴随着光子的辐射。这种现象就是发光现象。荧光则属于分子的光致发光现象。二、

荧光光谱仪原理

  目前荧光分析法已经发展成为一种重要且有效的光谱化学分析手段。在我国,50年代初期仅有极少数的分析化学工作者从事荧光分析方面的研究工作,但到了70年代后期,荧光分析法已引起国内分析界的广泛重视,在全国众多的分析化学工作者中,已逐步形成一支从事这一领域工作的队伍。  一、荧光分析特点  (1)荧光分

荧光光谱仪原理

荧光分析法的基本原理处于基态的被测物质的分子在吸收适当能量,如光、化学、物理能后,其共价电子从成键分子轨道或非键分子轨道跃迁到反键分子轨道上去,形成分子激发态。分子激发态不稳定,将很快衰变到基态。在分子激发态返回到基态的同时常伴随着光子的辐射。这种现象就是发光现象。荧光则属于分子的光致发光现象。二、

荧光光谱仪原理

荧光分析法的基本原理处于基态的被测物质的分子在吸收适当能量,如光、化学、物理能后,其共价电子从成键分子轨道或非键分子轨道跃迁到反键分子轨道上去,形成分子激发态。分子激发态不稳定,将很快衰变到基态。在分子激发态返回到基态的同时常伴随着光子的辐射。这种现象就是发光现象。荧光则属于分子的光致发光现象。二、

荧光光谱仪原理

荧光分析法的基本原理处于基态的被测物质的分子在吸收适当能量,如光、化学、物理能后,其共价电子从成键分子轨道或非键分子轨道跃迁到反键分子轨道上去,形成分子激发态。分子激发态不稳定,将很快衰变到基态。在分子激发态返回到基态的同时常伴随着光子的辐射。这种现象就是发光现象。荧光则属于分子的光致发光现象。二、

荧光光谱仪原理

荧光分析法的基本原理处于基态的被测物质的分子在吸收适当能量,如光、化学、物理能后,其共价电子从成键分子轨道或非键分子轨道跃迁到反键分子轨道上去,形成分子激发态。分子激发态不稳定,将很快衰变到基态。在分子激发态返回到基态的同时常伴随着光子的辐射。这种现象就是发光现象。荧光则属于分子的光致发光现象。二、

荧光光谱仪原理

 X射线光谱仪(rohs检测仪)通常可分为两大类,波长色散X射线荧光光谱仪(WDXRF)和能量色散X射线荧光光谱仪(EDXRF),波长色散光谱仪主要部件包括激发源、分光晶体和测角仪、探测器等,而能量色散光谱仪则只需激发源和探测器和相关电子与控制部件,相对简单。   波长色散X射线荧光光谱仪使用分析晶

荧光光谱仪简介

  结构  由光源、激发光源、发射光源、试样池、检测器、显示装置等组成。  分类  荧光光谱仪可分为 X射线荧光光谱仪和分子荧光光谱仪。  主要用途  1.荧光激发光谱和荧光发射光谱  2.同步荧光(波长和能量)扫描光谱  3.3D(Ex Em Intensity)  4.Time Base和CWA

荧光光谱仪原理

荧光分析法的基本原理处于基态的被测物质的分子在吸收适当能量,如光、化学、物理能后,其共价电子从成键分子轨道或非键分子轨道跃迁到反键分子轨道上去,形成分子激发态。分子激发态不稳定,将很快衰变到基态。在分子激发态返回到基态的同时常伴随着光子的辐射。这种现象就是发光现象。荧光则属于分子的光致发光现象。二、

荧光光谱仪分类

  按荧光原理可分:原子荧光光谱仪、分子荧光光谱仪和X射线荧光光谱仪等。  原子荧光光谱仪是通过测量待测元素的原子蒸气在辐射能激发下所产生的荧光发射强度,来测定待测元素含量的仪器。原子荧光激发光源一般为高强度空心阴极灯或无极放电灯一般原子荧光光度计用来对各类样品中痕量的铅、汞、砷、锗、锡、硒、碲、铋

荧光光谱仪原理

荧光光谱仪由激发光源、单色器、狭缝、样品室、信号检测放大系统和信号读出、记录系统组成。激发光源提供用于激发样品的入射光的来源。单色器用来分离出所需要的单色光。信号检测放大系统用来把荧光信号转化为电信号,结合放大系统上的读出装置可显示或记录荧光信号。一.激发光源因为物质的荧光强度与激发光的强度成正比,

荧光光谱仪结构

荧光光谱仪(荧光分光光度计)是测量荧光的仪器,主要由光源、激发单色器、样品池、发射单色器和检测器等组成。(1)光源由于荧光样品的荧光强度与激发光的强度成正比,因此,作为一种理想的激发光源应具备:足够的强度、在所需光谱范围内有连续的光谱、强度与波长无关(即光源的输出是连续平滑等强度的辐射)、稳定的光强

荧光光谱仪单分子荧光检测方法分析

  单分子荧光检测。单分子荧光分析是实现单分子检测最灵敏的光分析技术。单分子荧光检测的关键在于确保被照射的体积中只有一个分子与激光发生作用以及消除杂质荧光的背景干扰。单分子荧光检测可提供单分子水平上生物分子反应的动力学信息,分子构象以及构象随时间的变化,因此尤其在生命科学领域中具有广阔的应用前景,为

X射线荧光光谱仪的全反射荧光

  如果n1>n2,则介质1相对于介质2为光密介质,介质2相对于介质1为光疏介质。对于X射线,一般固体与空气相比都是光疏介质。所以,如果介质1是空气,那么α1>α2,即折射线会偏向界面。如果α1足够小,并使α2=0,此时的掠射角α1称为临界角α临界。当α1

荧光光谱仪的低温荧光分析方法介绍

  低温荧光分析。通常荧光分析都在室温下进行,荧光光谱为带光谱,由于自然界有许多有机化合物,其化学结构颇为接近,它们的光谱往往相互重叠,难以鉴别表征以及定量测定。随着温度的降低,介质黏度增大,荧光分子量子产率和荧光强度将增大。因此,在低温以及特殊条件下,荧光物质就能给出更易识别的的尖锐荧光光谱(“准

荧光光谱仪的偏振荧光分析和时间分辨荧光分析

  1、偏振荧光分析。荧光体的荧光偏振与荧光各向异性值的测定,能够提供与荧光体在激发态寿命期间动力学相关的信息,因此荧光偏振技术被广泛应用于研究分子间的作用,例如蛋白质与核酸、抗原与抗体、蛋白质与多肽的结合作用等。  2、时间分辨荧光分析。由于不同分子的荧光寿命不同,可在激发与检测之间延缓一段时间,

原子荧光光谱仪

原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。

原子荧光光谱仪

原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。

X荧光光谱仪特点

 X荧光光谱仪特点:   1、无损检测,可对电子电气设备,玩具指令中的有害物质进行定性定量分析。   2、测量时间短,客户可选择测试时间:60-300秒。   3、全封闭式金属机箱及防泄漏保护开关设计,更好地保障操作员的人身安全。流水线型外观,美观大方。   4、配备X Y轴可移动平台,方便样品点选

荧光光谱仪及其原理

什么是XRF? 一台典型的X射线荧光(XRF)仪器由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激励被测样品。样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量

荧光光谱仪及其原理

什么是XRF?一台典型的X射线荧光(XRF)仪器由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激励被测样品。样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软

X荧光光谱仪原理

X荧光光谱仪原理当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12~10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁.当较

原子荧光光谱仪

原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。 利用原子荧光谱线的波长

x荧光光谱仪原理

荧光,顾名思义就是在光的照射下发出的光。X射线荧光就是被分析样品在X射线照射下发出的X射线,它包含了被分析样品化学组成的信息,通过对上述X射线荧光的分析确定被测样品中各组份含量的仪器就是X射线荧光分析仪。从原子物理学的知识我们知道,对每一种化学元素的原子来说,都有其特定的能级结构,其核外电子都以各自

X荧光光谱仪原理

  当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12~10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程   称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁.当较外层