Antpedia LOGO WIKI资讯

羰基红外吸收峰有哪些

羰基吸收峰是在1900-1600cm-1区域出现强的C=O伸缩吸收谱带,这个谱带由于其位置的相对恒、强度高、受干扰小,已成为红外光谱图中最容易辨别的谱带之一。此吸收峰最常出现在1755-1670cm-1,但不同类别的化合物 C=O 吸收峰也各不相同。 关于 C=O 化合物的红外吸收规律在前面已叙述过,一般吸电子的诱导效应使 C=O 的吸收向高波移,共轭效应使其向低波移,环张力增加向高波数移,氢键一般向低波数移。下面我们将分类对各类羰基化合物进行讨论。 1、 酮 一般饱和脂肪酮 C=O 伸缩振动在1725-1705cm-1,α、β-不饱和酮和芳香酮,由于共轭作用使吸收向低波数移,使之低于1700cm-1,但是由于空间效应使之共轭减弱时,吸收频率下降不显著。 中的甲酮基受邻位两个甲基的空间阻碍作用,使羰基与苯环不能共平面,共轭效应减弱,所以VC=O在1700cm-1。 羰基的α-碳上连有负性取代基时,由于-I 诱导......阅读全文

简述红外光谱图解析的一般步骤

  利用红外吸收光谱进行有机化合物定性分析可分为两个方面:一是官能团定性分析,主要依据红外吸收光谱的特征频率来鉴别含有哪些官能团,以确定未知化合物的类别;二是结构分析,即利用红外吸收光谱提供的信息,结合未知物的各种性质和其它结构分析手段(如紫外吸收光谱、核磁共振波谱、质谱)提供的信息,来确定未知物的

【表征】红外吸收光谱解析方法与五大实例解析

  利用红外吸收光谱进行有机化合物定性分析可分为两个方面:  一是官能团定性分析,主要依据红外吸收光谱的特征频率来鉴别含有哪些官能团,以确定未知化合物的类别;  二是结构分析,即利用红外吸收光谱提供的信息,结合未知物的各种性质和其它结构分析手段(如紫外吸收光谱、核磁共振波谱、质谱)提供的信息,来确定

简述红外光谱图解析的一般步骤

  (1)根据分子式计算不饱和度公式:不饱和度 Ω=n4+1+(n3-n1)/2 其中:n4:化合价为4价的原子个数(主要是C原子), n3:化合价为3价的原子个数(主要是N原子), n1:化合价为1价的原子个数(主要是H,X原子)  (2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3

激光拉曼光谱仪的应用

一、无机化合物的分析化学结构的测定——无机化合物对称性强,用红外光谱法很难解决,而拉曼光谱测无机原子团的结构、以及测络合物的结构是很方便的。(1)对于汞离子在水溶液中,是以Hg+或Hg2+存在的,用红外光谱是无法确定的。因这两种离子在红外光谱上都无吸收带。在拉曼光谱中可看到(Hg-Hg)2+的强偏振

红外光谱图怎么看?

   红外光谱图怎么看?小编总结了一些技术内容。什么是光谱技术?有哪些分类,红外属于哪一类?光谱分析是一种根据物质的光谱来鉴别物质及确定它的化学组成,结构或者相对含量的方法。按照分析原理,光谱技术主要分为吸收光谱,发射光谱和散射光谱三种;按照被测位置的形态来分类,光谱技术主要有原

一文了解羰基化合物的光谱区域特征

   羰基吸收峰是在1900-1600cm-1区域出现强的C=O伸缩吸收谱带,这个谱带由于其位置的相对恒、强度高、受干扰小,已成为红外光谱图中最容易辨别的谱带之一。此吸收峰最常出现在1755-1670cm-1,但不同类别的化合物 C=O 吸收峰也各不相同。  关于 C=O 化合物的红外吸收规律在前面

羰基化合物的红外光谱特征

  (包括醛、酮、羧酸、酯、酸酐和酰胺等)   羰基吸收峰是在1900-1600cm-1区域出现强的C=O伸缩吸收谱带,这个谱带由于其位置的相对恒、强度高、受干扰小,已成为红外光谱图中最容易辨别的谱带之一。此吸收峰最常出现在1755-1670cm-1,但不同类别的化合物 C=O 吸收峰也各不相同。 

羰基的红外吸收峰

  (包括醛、酮、羧酸、酯、酸酐和酰胺等)   羰基吸收峰是在1900-1600cm-1区域出现强的C=O伸缩吸收谱带,这个谱带由于其位置的相对恒、强度高、受干扰小,已成为红外光谱图中最容易辨别的谱带之一。此吸收峰最常出现在1755-1670cm-1,但不同类别的化合物 C=O 吸收峰也各不相同。 

羰基红外吸收峰常见位置

  利用红外吸收光谱进行有机化合物定性分析可分为两个方面:一是官能团定性分析,主要依据红外吸收光谱的特征频率来鉴别含有哪些官能团,以确定未知化合物的类别;二是结构分析,即利用红外吸收光谱提供的信息,结合未知物的各种性质和其它结构分析手段(如紫外吸收光谱、核磁共振波谱、质谱)提供的信息,来确定未知物的

红外吸收光谱法——谱图解析实例(二)

  ③按波数自高至低的顺序,对吸收峰进行解析。首先由3075cm-1出现小的肩峰说明存在烯烃vC-H伸缩振动,在1640cm-1还出现强度较弱的vC=C伸缩振动,由以上两点表明此化合物为一烯烃。   ④在3000~2800cm-1的吸收峰表明有-CH3、-CH2-存在,在2960cm-

FT-IR用于正红花油的快速质控

正红花油是在中国和东南亚地区应用广泛的药油,主要用于治疗风湿骨痛、跌打损伤等。本文应用傅里叶变换红外光谱对不同厂家的正红花油产品进行分析。结果表明,通过对正红花油红外光谱的直接观察,可得知其中的主要成分,而对不同样本中某些成分的相对含量进行初步比较,可实现对产品的快速质量控制。 正红花油又

红外吸收光谱法——谱图解析实例(一)

  应广大亲们的要求,小编又连夜精心整整理了红外吸收光谱图解析实例,希望对你在红外吸收光谱的解析上有所帮助。   利用红外吸收光谱进行有机化合物定性分析可分为两个方面:一是官能团定性分析,主要依据红外吸收光谱的特征频率来鉴别含有哪些官能团,以确定未知化合物的类别;二是结构分析,即利用红

红外图谱口诀

   红外识谱图看似复杂,其实也有规律可循,试试这个口诀,说不定 也是一种方法。   红外可分远中近,中红特征指纹区,   1300来分界,注意横轴划分异。   看图要知红外仪,弄清物态液固气。   样品来源制样法,物化性能多联系。   识图先学饱和烃,三千以下看峰形。   2960、2870是甲基

怎样简单使用红外图谱

红外识谱歌 红外可分远中近,中红特征指纹区, 1300来分界,注意横轴划分异。看图要知红外仪,弄清物态液固气。 样品来源制样法,物化性能多联系。 识图先学饱和烃,三千以下看峰形。2960、2870是甲基,2930、2850亚甲峰。 1470碳氢弯,1380甲基

红外光谱的分区

  1. 红外光谱的分区  通常将红外光谱分为三个区域:近红外区(0.75~2.5μm)、中红外区(2.5~25μm)和远红外区(25~300μm)。一般说来,近红外光谱是由分子的倍频、合频产生的;中红外光谱属于分子的基频振动光谱;远红外光谱则属于分子的转动光谱和某些基团的振动光谱。  由于绝大多数

红外光谱识谱歌

红外光谱识谱歌(与你共享)1 Q& A  p& N3 B) H* d8 {1 }8 Y8 l& L$ G. K& [! c4 b4 W外可分远中近,中红特征指纹区,: q& ], g4 N( p; d( I" ]1300来分界,注

红外谱图解析口诀

红外可分远中近,中红特征指纹区,1300来分界,注意横轴划分异。看图要知红外仪,弄清物态液固气。 样品来源制样法,物化性能多。 识图先学饱和烃,三千以下看峰形。 2960、2870是甲基,2930、2850亚甲峰。 1470碳氢弯,1380甲基显。 二个甲基同一碳,1380分二半。 面内摇

红外识谱歌

     红外可分远中近,中红特征指纹区, 1300来分界,注意横轴划分异。  看图要知红外仪,弄清物态液固气。  样品来源制样法,物化性能多联系。  识图先学饱和烃,三千以下看峰形。  2960、2870是甲基,2930、2850亚甲峰。  1470碳氢弯,1380甲基显。  

红外光谱图谱记忆口诀

   红外可分远中近,中红特征指纹区,   1300来分界,注意横轴划分异。   看图要知红外仪,弄清物态液固气。   样品来源制样法,物化性能多联系。   识图先学饱和烃,三千以下看峰形。   2960、2870是甲基,2930、2850亚甲峰。   1470碳氢弯,1380甲基显。   二个甲基

简述红外光谱图解析的一般步骤

  一、红外光谱的原理  1. 原理  样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。  辐射→分子振动能级跃迁→红外光谱→官能团→分子结构 

你所不知道的简述红外光谱图解析的一般步骤

  一、红外光谱的原理  1. 原理  样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。  辐射→分子振动能级跃迁→红外光谱→官能团→分子结构 

一文简述红外光谱图解析的一般步骤

  一、红外光谱的原理  1. 原理  样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。  辐射→分子振动能级跃迁→红外光谱→官能团→

高分子红外光谱的解析策略

  红外光谱最广泛的应用在于对物质的化学组成分析,即根据光谱中吸收峰的位置和形状来推断未知物结构,依照特征吸收峰的强度来测定混合物中各组分的含量。红外光谱法具有快速、高灵敏度、试样用量少、能分析各种状态的试样等特点,在利用红外光谱可以鉴别高聚物,分析其中的化学成分。除此之外,高聚物材料中的添加剂、残

红外光谱图的解析经验

红外光谱图的解析经验首先应该对各官能团的特征吸收熟记于心,因为官能团特征吸收是解析谱图的基础。一、分析红外谱图(1)首先依据谱图推出化合物碳架类型,根据分子式计算不饱和度。公式:不饱和度=F+1+(T-O)/2 其中: F:化合价为4价的原子个数(主要是C原子);T:化合价为3价的原子个数(主要是N

红外光谱是什么?红外光谱图怎么看

  红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱,又称分子振动光谱或振转光谱。  红外谱图的分区  按吸收峰的来源,可以将2.5~25μm的红外光谱图大体上分为特征频率区(2.5~7.7μm)以及指纹区(7.7~16

利用MALDI—TOFMS检测农药的新方法

为消除病虫害对农作物的影响,人们在植物的生长过程中使用了大量农药,但农药的使用具有双面性,一方面带来了粮食增产,另一方面也带来了环境和食品安全问题。近年来,有关食品中农药残留对人体造成严重危害的事例屡次被报道。目前,对农药残留的检测主要使用色谱法,但色谱法检测仪器复杂,样品前处理过程繁杂,严重影响食

红外谱图的解析经验

应该对各官能团的特征吸收熟记于心,因为官能团特征吸收是解析谱图的基础。对一张已经拿到手的红外谱图:(1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+(T-O)/2 其中:F:化合价为4价的原子个数(主要是C原子),T:化合价为3价的原子个数(主要是N原子),O:化

芳香族化合物的紫外吸收光谱及溶剂效应实验

实验方法原理作为有机化合物结构解析四大光谱之一,紫外吸收光谱具有方法简单、仪器普及率高、操作简便,紫外吸收光谱吸收强度大检出灵敏度高,可进行定性、定量分析的特点。尽管紫外光谱谱带数目少、无精细结构、特征性差,只能反映分子中发色团和助色团及其附近的结构特征,无法反映整个分子特性,单靠紫外光谱数据去推断

快速了解红外光谱分析步骤

  1、根据分子式,计算不饱和度:f = 1 + n4 + 1/2 ( n3 – n1)   通过计算不饱和度估计分子结构式中是否有双键、三键或芳香环等,并可验证光谱解析是否合理  2、根据未知物的红外光谱图找出主要的强吸收峰。按照由简单到复杂的顺序,习惯上将红外区分为五个区域来分析:  (1)40

红外谱图解析的步骤有哪些?

  1、根据分子式,计算不饱和度:f = 1 + n4 + 1/2 ( n3 – n1)   通过计算不饱和度估计分子结构式中是否有双键、三键或芳香环等,并可验证光谱解析是否合理  2、根据未知物的红外光谱图找出主要的强吸收峰。按照由简单到复杂的顺序,习惯上将红外区分为五个区域来分析:  (1)40