什么是散射光谱分析法

散射是指电磁波与物质发生相互作用后部分光子偏离原来的入射方向而分散传播的现象。物质中与入射的电磁波相互作用而致其散射的基本基元称为散射基元。散射基元是实物粒子,可能是分子、原子中的电子等。散射波取决于物质结构及入射波的波长大小等因素。这种现象于1928年由印度科学家拉曼所发现,因此这种产生新波长的光的散射被称为拉曼散射,所产生的光谱被称为拉曼光谱或拉曼散射光谱。 有的物体能自行发光,由它直接产生的光形成的光谱叫做发射光谱。 发射光谱可分为三种不同类别的光谱:线状光谱、带状光谱和连续光谱。线状光谱主要产生于原子,由一些不连续的亮线组成;带状光谱主要产生于分子由一些密集的某个波长范围内的光组成;连续光谱则主要产生于白炽的固体、液体或高压气体受激发发射电磁辐射,由连续分布的一切波长的光组成。 在白光通过气体时,气体将从通过它的白光中吸收与其特征谱线波长相同的光,使白光形成的连续谱中出现暗线。此时,这种在连续光谱中某些波长的光......阅读全文

什么叫做散射光谱

光谱可分为发射光谱、吸收光谱和散射光谱。有的物体能自行发光,由它直接产生的光形成的光谱叫做发射光谱。发射光谱可分为三种不同类别的光谱:线状光谱、带状光谱和连续光谱。线状光谱主要产生于原子,由一些不连续的亮线组成;带状光谱主要产生于分子由一些密集的某个波长范围内的光组成;连续光谱则主要产生于白炽的固体

拉曼散射光谱简介

一定波长的电磁波作用于被研究物质的分子,引起分子相应能级的跃迁,产生分子吸收光谱。引起分子电子能级跃迁的光谱称电子吸收光谱,其波长位于紫外~可见光区,故称紫外-可见光谱。电子能级跃迁的同时伴有振动能级和转动能级的跃迁。引起分子振动能级跃迁的光谱称振动光谱,振动能级跃迁的同时伴有转动能级的跃迁。拉曼散

拉曼散射光谱的特征

a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情

影响散射光谱技术的因

物体辐射的波长因为波源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高(蓝移blue shift);在运动的波源后面时,会产生相反的效应。波长变得较长,频率变得较低(红移red shift);波源的速度越高,所产生的效应越大。根据波红(蓝)移的程度,可以计算出波源

拉曼光谱,布里渊散射光谱,红外吸收光谱的区别

飞秒检测发现拉曼光谱是基于分子的对称振动产生的能量辐射和吸收,布里渊散射也属于喇曼效应,即光在介质中受到各种元激发的非弹性散射,其频率变化表征了元激发的能量。与拉曼散射不同的是,在布里渊散射中是研究能量较小的元激发,如声学声子和磁振子等。而红外吸收光谱是基于分子的不对称振动而产生的吸收和能量辐射

拉曼散射光谱仪简介

  拉曼光谱仪对于普通人来说还是挺陌生的,一般在科研院所、高等院校物理和化学实验室、生物及医学领域等这类地方比较常见,用于光学方面和研究物质成分的判定与确认;拉曼光谱仪还可以应用于刑侦方面,进行毒品的检测,还可以应用于珠宝行业,进行宝石的鉴定。  该仪器外形构造比较简单,设计更加灵活,操作也很简便,

红外吸收光谱和拉曼散射光谱的区别与联系

  红外光谱和拉曼光谱都属于分子振动光谱,作为两种重要的研究手段常被用于结构鉴定、反应分析和晶型研究等领域,是分子结构层面的有力研究手段。二者相辅相成,既互相补充又有很大的差别。  红外吸收光谱是由分子振动产生,分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动图形。当分子中

光散射光谱法是什么意思

动态光散射Dynamic Light Scattering (DLS),也称光子相关光谱Photon Correlation Spectroscopy (PCS) ,准弹性光散射quasi-elastic scattering,测量光强的波动随时间的变化。DLS技术测量粒子粒径,具有准确、快速、可重

什么是散射光谱分析法

  散射是指电磁波与物质发生相互作用后部分光子偏离原来的入射方向而分散传播的现象。物质中与入射的电磁波相互作用而致其散射的基本基元称为散射基元。散射基元是实物粒子,可能是分子、原子中的电子等。散射波取决于物质结构及入射波的波长大小等因素。这种现象于1928年由印度科学家拉曼所发现,因此这种产生新波长

散射的拉曼散射

拉曼散射(Ramanscattering),光通过介质时由于入射光与分子运动相互作用而引起的频率发生变化的散射。又称拉曼效应。1923年A.G.S.斯梅卡尔从理论上预言了频率发生改变的散射。1928年,印度物理学家C.V.拉曼在气体和液体中观察到散射光频率发生改变的现象。拉曼散射遵守如下规律:散射光

散射的拉曼散射

拉曼散射(Ramanscattering),光通过介质时由于入射光与分子运动相互作用而引起的频率发生变化的散射。又称拉曼效应。1923年A.G.S.斯梅卡尔从理论上预言了频率发生改变的散射。1928年,印度物理学家C.V.拉曼在气体和液体中观察到散射光频率发生改变的现象。拉曼散射遵守如下规律:散射光

拉曼散射光谱具有那几个明显的特征

  a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关;  b.在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。  c.一

什么是透射和散射光谱分析法?

主要测定光线通过溶液混悬颗粒后的光吸收或光散射程度,常用方法为比浊法,又可称为透射比浊法和散射比浊法。临床上多用于对抗原或抗体的定量分析。

X射线荧光光谱仪X射线散射的介绍

  除光电吸收外,入射光子还可与原子碰撞,在各个方向上发生散射。散射作用分为两种,即相干散射和非相干散射。  相干散射:当X射线照射到样品上时,X射线便与样品中的原子相互作用,带电的电子和原子核就跟随着X射线电磁波的周期变化的电磁场而振动。因原子核的质量比电子大得多,原子核的振动可忽略不计,主要是原

如何减小或消除荧光光谱上的散射信号干扰

小弟最近做荧光,在荧光物质的发射区总是会有来自激发光信号的干扰,且干扰强烈,请问一下大家怎样能消除掉这些干扰。 谢谢 荧光分析法上说,可以调节狭缝宽度,但我觉得效果也不好。那你就换个激发波长试试吧,不用最佳激发波长激发,避开发射峰。lee10yie(站内联系TA)可以先测定空白溶液的荧光光谱(从图上

如何减小或消除荧光光谱上的散射信号干扰

小弟最近做荧光,在荧光物质的发射区总是会有来自激发光信号的干扰,且干扰强烈,请问一下大家怎样能消除掉这些干扰。 谢谢 荧光分析法上说,可以调节狭缝宽度,但我觉得效果也不好。那你就换个激发波长试试吧,不用最佳激发波长激发,避开发射峰。lee10yie(站内联系TA)可以先测定空白溶液的荧光光谱(从图上

光散射光谱学帮助医生识别早期胰腺癌

  新的光学工具预测囊肿的恶性潜能具有95%的准确性,而目前测试的精确度为58%。  胰腺癌在所有主要癌症中的存活率最低,主要是因为医生在早期可治疗阶段缺乏诊断工具来检测疾病。现在,由Beth Israel Deaconess医疗中心(BIDMC)高级生物医学影像和光子学中心的主任Lev T. Pe

瑞利散射与拉曼散射的区别

分子的外层电子在辐射能的照射下,吸收能量使电子激发至基态中较高的振动能级,在10-12s左右跃回原能级并产生光辐射,这种发光现象称为瑞利散射.分子的外层电子在辐射能的照射下,吸收能量使电子激发至基态中较高的振动能级,在10-12s左右跃回原能级附近的能级并产生光辐射,这种发光现象称为拉曼散射.两者皆

荧光、磷光以及光散射的光物理基础及光谱分析

  百余年来,人们观察小到包括原子、分子的微观世界,大到包括宇宙天体在内的宏观世界,主要手段就是观察光,收集光子(人们认识外部自然界,获取对客观世界的知识,其中有83%的信息是通过“光”获得的,即靠人的眼睛认识世界获得的信息更多)。  导语  光谱学是光学的一个分支学科,它主要研究各种物质光谱产生的

硫酸奎宁在不同激发波长下的荧光(a)与散射光谱(b)

硫酸奎宁在不同激发波长下的荧光(a)与散射光谱(b)

荧光、磷光以及光散射的光物理基础及光谱分析

  百余年来,人们观察小到包括原子、分子的微观世界,大到包括宇宙天体在内的宏观世界,主要手段就是观察光,收集光子(人们认识外部自然界,获取对客观世界的知识,其中有83%的信息是通过“光”获得的,即靠人的眼睛认识世界获得的信息更多)。  导语  光谱学是光学的一个分支学科,它主要研究各种物质光谱产生的

X射线散射

美国物理学家康普顿(Arthur Holy Compton,1892~1962)在大学生时期就跟随其兄卡尔·康普顿开始X射线的研究。后来他到了卡文迪什实验室,主要从事g射线的实验研究。他用精湛的实验技术精确测定了γ射线的波长,并确定γ射线在散射后波长会变得更长。但他没能从理论上解释这个实验事实。他到

什么叫散射

散射 Scattering 分子或原子相互接近时,由于双方很强的相互斥力,迫使它们在接触前就偏离了原来的运动方向而分开,这通常称为散射。散射是指由传播介质的不均匀性引起的光线向四周射去的现象。如一束光通过稀释后的牛奶后为粉红色,而从侧面和上面看,是浅蓝色。定义1:电磁波辐射在非均匀媒质或各向异性媒质

拉曼散射

1921 年,印度物理学家拉曼(C. V. Raman)从英国搭船回国,在途中他思考着为什么海洋会是蓝色的问题,而开始了这方面的研究,促成他于 1928 年 2 月发现了新的散射效应,就是现在所知的拉曼效应,在物理和化学方面都很重要。 1888 年 11 月,拉曼(他的全名是 Chandrasek

瑞利散射与拉曼散射的对比介绍

当一束激发光的光子与作为散射中心的分子发生相互作用时,大部分光子仅是改变了方向,发生散射,而光的频率仍与激发光源一致,这种散射称为瑞利散射。但也存在很微量的光子不仅改变了光的传播方向,而且也改变了光波的频率,这种散射称为拉曼散射。其散射光的强度约占总散射光强度的~。拉曼散射的产生原因是光子与分子之间

关于不同类型层状材料拉曼散射光谱的综述论文

  由中国科学院半导体研究所半导体超晶格国家重点实验室科研人员张昕和谭平恒撰写的关于不同类型层状材料的拉曼散射光谱的综述论文,近日在Nanoscale 发表(Xin Zhang, Qing-Hai Tan, Jiang-Bin Wu, Wei Shi and Ping-Heng Tan, Nanos

共振瑞利散射光谱在纳米检测、手性分析等领域前景光明

  “七彩光谱 万象更新”主题,访重庆三峡学院杨季冬教授  光谱技术已迈过百年历史长河,中国的光谱分析技术亦可追溯到上个世纪50年代,今日中国的光谱技术已从国际上“跟跑”跃升到部分领域领跑的地位。在这背后,老中青科学家,克服了严峻的挑战、付出了辛勤的汗水。伴随着将在成都召开的第21届全国分子光谱学学

布里渊散射的概念

布里渊散射是布里渊于1922年提出的,可以研究气体,液体和固体中的声学振动,但作为一种实用的研究手段,是在激光出现以后才发展起来的。布里渊散射也属于拉曼效应,即光在介质中受到各种元激发的非弹性散射,其频率变化表征了元激发的能量。与拉曼散射不同的是,在布里渊散射中是研究能量较小的元激发,如声学声子和磁

光散射检测方法

在当下的今天,检测物质通过GPC/SEC柱后,利用激光散射技术检测到聚合物分子大小的信息。由于具有高灵敏度,这个方法在整个色谱分析的过程中需要特别注意-样品制备、溶剂纯度、GPC柱的稳定性和质量,缺一不可。高性能苯乙烯-二乙烯基共聚物GPC柱。是在MZ 液相色谱柱 MZ-Gel SD Ls基础上,经

激光光散射仪

快速、简捷、精确、功能强大,ZL动态光散射技术无需过滤,对样品量要求很小。 测量尺度范围:0.5-1000nm;   最小的样品浓度: 0.1 mg/ml;   散射角 : 90°;   激光波长:658nm;    激光功率:0-100mW;    最小的样品体积:12 或 45μl;   温度范