物理所揭示二硫化钼嵌锂诱导结构相变的原子机制

层状金属硫化物体系具有多变的原子配位结构和电子结构,电子和声子之间存在很强的相互作用。层间较弱的范德瓦尔斯力使得可以通过嵌入各种功能化的分子和离子来调控材料的性质。二硫化钼(MoS2)及其插层化合物在很多方面具有重要的应用价值,例如制备催化剂、吸附剂、固体电解质、感应器、电致变色显示器以及二次锂离子电池等。因此MoS2中的嵌入化学以及嵌入化合物的物理和化学性质在基础研究和实际应用中都受到高度关注。锂离子嵌入MoS2中的过程在以往被描述为一种离子-电子转移的拓扑反应,金属锂(施主)中的电子转移到钼(受主)的最低未占据轨道即d轨道上。这种描述中受主只提供了受主位置和氧化还原中心,然而实际上嵌入反应同样会导致受主发生重要的结构和相转变。由于层间耦合、量子局域效应和对称性的改变等使得锂离子嵌入前后结构性质发生本质的变化。 中国科学院物理研究所/北京凝聚态物理国家实验室(筹)表面物理国家重点实验室多年来通过研制原位透射电镜中的扫描探......阅读全文

物理所揭示二硫化钼嵌锂诱导结构相变的原子机制

  层状金属硫化物体系具有多变的原子配位结构和电子结构,电子和声子之间存在很强的相互作用。层间较弱的范德瓦尔斯力使得可以通过嵌入各种功能化的分子和离子来调控材料的性质。二硫化钼(MoS2)及其插层化合物在很多方面具有重要的应用价值,例如制备催化剂、吸附剂、固体电解质、感应器、电致变色显示器以及二次锂

上海应物所等揭示锂离子嵌入碳纳米管束的精细过程

     锂离子嵌入碳纳米管束示意图  中国科学院上海应用物理研究所物理生物学实验室宋波和方海平采用最新的量子分子动力学模拟技术,研究了锂离子嵌入碳纳米管束及其在碳纳米管束中扩散的动态行为。相关研究结果发表在《能源与环境科学》(Energy & Environmental Sci

嵌入式光谱

德国tec5公司新开发的嵌入式光谱仪平台tecSaaS(tec5 Spectrometer as a Sensor),基于UV-VIS-NIR光谱技术,是一款可以不依赖于PC而独立工作的、模块化的光谱测试平台,可以直接集成到可移动式检测设备或工厂的生产线中,以实现高度智能化,灵活多样化和高度自动

嵌入式光谱

  德国tec5公司新开发的嵌入式光谱仪平台tecSaaS(tec5 Spectrometer as a Sensor),基于UV-VIS-NIR光谱技术,是一款可以不依赖于PC而独立工作的、模块化的光谱测试平台,可以直接集成到可移动式检测设备或工厂的生产线中,以实现高度智能化,灵活多样化和高度自动

嵌入式光谱

  德国tec5公司新开发的嵌入式光谱仪平台tecSaaS(tec5 Spectrometer as a Sensor),基于UV-VIS-NIR光谱技术,是一款可以不依赖于PC而独立工作的、模块化的光谱测试平台,可以直接集成到可移动式检测设备或工厂的生产线中,以实现高度智能化,灵活多样化和高度自动

冷冻电镜流形嵌入方法

 流形嵌入方法(Manifold Embedding)自然界的分子过程通常是连续的,比如三磷酸腺苷(ATP)合成酶等分子结构的状态变化通常都是连续的。现有的方法只能得到有限的、若干个离散的构象变化,限制了我们对于分子结构的进一步观察。而流形嵌入法则是通过将颗粒图像映射到具有特定拓扑结构的参数空间(m

在盐水电解质中嵌入3D-锂离子通道,开发柔性超级电容器

  水电解质具有良好的环境友好性和良好的离子导电性,是商用有机电解质很有前途的替代品。然而,它们的工作电压窗口很窄(1.23 V),因此产生的能量密度不足。盐中水电解质(WiSEs)被认为是一种新的方式,可以获得良好的热稳定性和电化学稳定性,并具有广阔的发展前景(3.0 V的水电池)。在WiSEs中

一文详解“锂离子电池负极材料”

  人们研究过的锂离子电池负极材料种类繁多, 主要有石墨、硬炭、软炭等碳材料, 钛酸锂、硅基、锡基等非碳材料。  负极材料要求  为了保证良好的电化学性能, 对负极材料要求如下:  ① 锂离子嵌入和脱出时电压较低, 使电池具有高工作电压;  ② 质量比容量和体积比容量较高, 使电池具有高能量密度; 

锂离子电池充放电原理详解

锂离子电池的工作原理就是指其充放电原理。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。作为负极的碳呈层状结构,它有很多微孔,到达负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样道理,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂

DNA嵌入剂的定义和应用

中文名称DNA嵌入剂英文名称DNA intercalator定  义能够插入到DNA双链中相邻的碱基对间而与DNA结合的化合物。多为具有芳香族结构的扁平分子,如吖啶类染料。DNA嵌入剂与DNA结合会引起双螺旋的解旋、伸长和僵硬,导致染色质结构和功能的改变。应用学科生物化学与分子生物学(一级学科),方

锂电池的工作原理简介

  锂离子电池以碳素材料为负极,以含锂的化合物作正极,没有金属锂存在,只有锂离子,这就是锂离子电池。锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称。锂离子电池的充放电过程,就是锂离子的嵌入和脱嵌过程。在锂离子的嵌入和脱嵌过程中,同时伴随着与锂离子等当量电子的嵌入和脱嵌(习惯上正极用嵌入或脱嵌表

锂离子电池的作用机理介绍

  锂离子电池以碳素材料为负极,以含锂的化合物作正极,没有金属锂存在,只有锂离子,这就是锂离子电池。锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称。锂离子电池的充放电过程,就是锂离子的嵌入和脱嵌过程。在锂离子的嵌入和脱嵌过程中,同时伴随着与锂离子等当量电子的嵌入和脱嵌(习惯上正极用嵌入或脱嵌表

简述锂离子电池的作用机理

  锂离子电池以碳素材料为负极,以含锂的化合物作正极,没有金属锂存在,只有锂离子,这就是锂离子电池。锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称。锂离子电池的充放电过程,就是锂离子的嵌入和脱嵌过程。在锂离子的嵌入和脱嵌过程中,同时伴随着与锂离子等当量电子的嵌入和脱嵌(习惯上正极用嵌入或脱嵌表

关于锂离子电池的使用原理介绍

  锂离子电池以碳材料为负极,以含锂的化合物作正极,没有金属锂存在,只有锂离子,这就是锂离子电池。锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称。锂离子电池的充放电过程,就是锂离子的嵌入和脱嵌过程。在锂离子的嵌入和脱嵌过程中,同时伴随着与锂离子等当量电子的嵌入和脱嵌(习惯上正极用嵌入或脱嵌表示

锂离子电池工作原理

锂离子电池是一种充电电池,它重要依赖锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。一般采用含有锂元素的材料作为电极的电池。是现代高性能电池的代表。锂离子电池的充放电过程,就是锂离子

锂离子电池是什么?

  锂系电池分为锂电池和锂离子电池。目前手机和笔记本电脑使用的都是锂离子电池,通常人们俗称其为锂电池,而真正的锂电池由于危险性大,很少应用于日常电子产品。  锂离子电池以碳素材料为负极,以含锂的化合物作正极,没有金属锂存在,只有锂离子,这就是锂离子电池。锂离子电池是指以锂离子嵌入化合物为正极材料电池

锂离子电池的工作原理和放电注意事项

锂离子电池以碳素材料为负极,以含锂的化合物作正极,没有金属锂存在,只有锂离子,这就是锂离子电池。锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称。锂离子电池的充放电过程,就是锂离子的嵌入和脱嵌过程。在锂离子的嵌入和脱嵌过程中,同时伴随着与锂离子等当量电子的嵌入和脱嵌(习惯上正极用嵌入或脱嵌表示,

什么是高压锂蓄电池?有什么性能特点?

高压锂蓄电池的性能重要取决于活性材料和电解质的结构和性质。正极材料是最关键的芯材,电解质的匹配效果也很重要。目前,研究和应用最广泛的高压阴极材料是二维层状结构的锂钴氧化物。该结构为α-NaFeO2型,更适合锂离子的插层和去除。锂钴氧化物的理论能量密度为274mAh/g,加工工艺简单,电化学性能稳定,

锂电芯和聚合物电芯有什么区别?

锂离子电池工作原理锂离子电池是一种二次电池(充电电池),它重要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。锂离子电池以碳素材料为负极,以含锂的化合物作正极,没有金属锂存在,只有

简述锂电池26650的放电原理

  26650锂电池之所以能够进行充电放电,是随其正极上的活性锂离子运动而进行的。即:对电池进行充电时,锂电池正极上有活性锂离子生成,运动到负极,嵌入到负极的层状结构当中。负极的材料体系是石墨,是呈层状结构的碳,它有很多微孔,当锂离子运动到负极时,就会嵌入微孔当中,嵌入微孔的锂离子越多,充电容量越高

探索嵌入式应用框架(EAF)(二)

M2M的应用框架鉴于 M2M 技术的特点, 系统设计者可能不得不从头开始构建整个 M2M 体系结构。其核心是, M2M 技术包括增加一个装置或设备的智能服务, 并将该设备与可以监控或控制该设备的后端基础设施连接起来。 为了实现这一目标, 一个 M2M 设备使用了两个基本元素: 与

浅析嵌入式系统低功耗设计

在嵌入式系统中,低功耗设计是在产品规划以及设计过程中必须要面对的问题。半导体芯片每18个月性能翻倍。但同时,电池的技术却跟不上半导体的步伐,同体积的电池10年容量才能翻一倍。嵌入式系统对于使用时间以及待机时间的要求也越来越高,这就需要在设计产品的时候充分考虑到整个系统的低功耗设计。功耗控制是一个系统

嵌入式光谱仪的应用

  UV-VIS-NIR光谱技术已在PAT和移动光谱应用中使用了很多年,因为光谱学测量的快速、非接触及维护率低等特点,使得人们可利用光谱学深入了解生产过程中产品的状态。智能嵌入式光谱传感器系统(tecSaaS)更加的可靠和稳定,它避免了传统光谱测量系统中PC机采集、评估和处理光谱数据时可能会发生的问

探索嵌入式应用框架(EAF)(一)

EAF是Embedded Application Framework 的缩写,即嵌入式应用框架。嵌入式应用框架是 Application framework的一种, 是在嵌入式领域的应用框架。Application Framework——应用框架,是一种软件框架,软件开发人员用应用框架作为标

锂离子电池对正极材料的要求有哪些?

锂离子电池正极材料的性能直接影响着锂离子电池的性能,其成本也直接决定电池成本高低。目前研制成功并得到应用的正极材料重要有钴酸锂、磷酸铁锂、锰酸锂、三元材料镍钴锰酸锂(NCM)和镍钴铝酸锂(NCA)等。锂离子电池对正极材料的基本要求:第一,材料自身电位高,这样才能与负极材料之间形成较大的电位差,带来能

锂离子电池对正极材料的要求有哪些?

锂离子电池正极材料的性能直接影响着锂离子电池的性能,其成本也直接决定电池成本高低。目前研制成功并得到应用的正极材料重要有钴酸锂、磷酸铁锂、锰酸锂、三元材料镍钴锰酸锂(NCM)和镍钴铝酸锂(NCA)等。锂离子电池对正极材料的基本要求:第一,材料自身电位高,这样才能与负极材料之间形成较大的电位差,带来能

锂离子电池对正极材料的基本要求

锂离子电池正极材料的性能直接影响着锂离子电池的性能,其成本也直接决定电池成本高低。目前研制成功并得到应用的正极材料重要有钴酸锂、磷酸铁锂、锰酸锂、三元材料镍钴锰酸锂(NCM)和镍钴铝酸锂(NCA)等。锂离子电池对正极材料的基本要求:第一,材料自身电位高,这样才能与负极材料之间形成较大的电位差,带来能

锂离子电池对正极材料的要求有哪些?

锂离子电池正极材料的性能直接影响着锂离子电池的性能,其成本也直接决定电池成本高低。目前研制成功并得到应用的正极材料重要有钴酸锂、磷酸铁锂、锰酸锂、三元材料镍钴锰酸锂(NCM)和镍钴铝酸锂(NCA)等。锂离子电池对正极材料的基本要求:第一,材料自身电位高,这样才能与负极材料之间形成较大的电位差,带来能

锂离子电池对正极材料的要求有哪些

锂离子电池正极材料的性能直接影响着锂离子电池的性能,其成本也直接决定电池成本高低。目前研制成功并得到应用的正极材料重要有钴酸锂、磷酸铁锂、锰酸锂、三元材料镍钴锰酸锂(NCM)和镍钴铝酸锂(NCA)等。锂离子电池对正极材料的基本要求:第一,材料自身电位高,这样才能与负极材料之间形成较大的电位差,带来能

纤维细胞的转变

  在 结缔组织中,成纤维细胞还以其成熟状态—纤维细胞(fibrocyte)的形式存在,二者在一定条件下可以互相转变。 不同类型的 结缔组织含成纤维细胞的数量不同。通常,疏松结缔组织中成纤维 细胞的数量比同样体积的致密结缔组织中所含成纤维细胞的数量要少,故分离培养成纤维细胞多以 真皮等致密结缔组织为