射线探测仪的详细介绍

X射线探测器不断走向智能手机和消费电子产品的发展之路,他们变得更轻、更方便操作以及更耐用,同时呈现高品质图像。 X射线探测器是CT成像的核心,是一种将X射线能量转换为可供记录的电信号的装置。它接收到射线照射,然后产生与辐射强度成正比的电信号。 便携式射线探测仪HENT33-013A基于全新编码成像技术,将伽马射线探测、数据采集和处理、图像重建、数据存储、电源等集成于一体,可实现放射源实施成像,同时支持离线数据分析。具有很高的集成度、携带性。正常工作时,无任何外部线缆连接,大限度降低了在放射性现场使用中受沾染的风险。机身采用三防设计,可清洗。 视场可调,大视场模式适用于对环境进行高效率扫描,高精度视场模式适用于对放射源进行准确定位。广泛应用于放射性环境监测、未知放射源搜寻、核设施检查、核部件退役、出入境安检、放射源运输监测等领域。 便携式射线探测仪产品特性 1.低剂量有效探测、超远距离准确定位、高灵敏快速成像 2.......阅读全文

X射线探测器概述

  X射线探测器(X-raydetector)是CT成像的核心,将肉眼看不到的“X射线”转换为最终能转变为图像的“数字化信号”。  x射线探测器是一种将X射线能量转换为可供记录的 电信号的装置。它接收到射线照射,然后产生与辐射强度成正比的电信号。 通常探测器所接受到的射线信号的强弱,取决于该部位的人

气体X射线探测器简介

  气体探测器均以气体作为探测介质,内部多充有以多种惰性气体为主混合气体,并在探测器两极加上电压小室。其小室的形状大小结构因气体探测器的不同会有加大差别。在探测器使用时我们多将内部气体大气压加至2到3个大气压,这样可以有效提高气体探测器的探测效率。气体探测器的工作原理是通过收集电离电荷获取核辐射信息

X射线探测器的发展简介

  增大z轴的覆盖宽度  从发展的角度看,希望X射线管旋转一周就能获得更多的层面,即可完成一个脏器的扫描,实现所谓的容积扫描(Volume Scan)。为此势必要增大探测z轴的覆盖宽度,要想延长z轴的覆盖宽度,不仅取决于增加探测器的排数,建立更多的数据采集通道同样非常重要,这样才能既保证Z轴的覆盖宽

X射线衍射仪的的X射线探测器和控制装置介绍

  (1)X射线探测器 —— 测量X射线强度的计数装置;  计数器的主要功能是将X射线光子的能量转换成电脉冲信号。通常用于X射线衍射仪的辐射探测器有正比计数器、闪烁计数器和位敏正比探测器。  (2)X射线系统控制装置 —— 数据采集系统和各种电气系统、保护系统。  X射线能对人体组织造成伤害,在自己

X射线探测器相关内容

  X射线探测器主要是用于测量目标样品发出的X射线荧光,目前市场上已经有多种不同类型的X射线荧光分析探测器可用。能量色散X射线荧光光谱分析技术通常使用的为固态探测器,例如SI-PIN探测器或者硅漂移探测器(SSD)等。每种类型的探测器在不同的应用方面都具有不同的优劣势,因此并不存在最好与最差之分,只

关于闪烁X射线探测器的介绍

  在介绍闪烁探测器之前,必须先了解光脉冲,当闪烁物质受到放射线或其他高能粒子辐照时会激发阻止介质原子,被激发的原子由激发态退激回到基态时会形成荧光脉冲[7]。闪烁探测器正是利用某些物质在核辐射的作用下会发光的这一特性工作的。闪烁探测器主要是由被封闭在一个不透明的外壳里的闪烁体、接收光的收集系统、光

半导体X射线探测器相关介绍

  半导体探测器是以半导体材料为探测介质的辐射探测器。锗和硅是我们最通用的半导体探测材料,其基本原理与气体电离室相类似。晶体计数器可以认为是半导体探测器的前身,20世纪初期人们发现在核辐射下可以通过某些固体电介质产生电导现象,在这之后金刚石、氯化银等晶体计数器又相继被人们发明。可是我们至今无法解决晶

X射线探测器的结构相关介绍

  CT机种的X射线探测器结构如图所示。位于管套中的真空管为旋转阳极式的射线管。管内设有阳极、阴极、灯丝和转子,在真空管外部对应阳极转子处设有定子线圈。定子线圈通入电流产生旋转磁场,在铜质的转子中产生。  一个典型的探测器包括:闪烁体、光电转换阵列和电子学部分。此外还有软件、电源等附件。目CT中常用

多能混合像素光子计数X射线探测器

  我们一直持续致力于不断的探索研究去突破技术壁垒,以获得更为高效的测试过程及测试装置,使测试性能趋于完美。目前我们在同步仪器及科学研究领域所取得的巨大成就已充分证明了这一点。      新型的EIGER X 系列探测器可以为要求极为苛刻的同步应用提供好的探测性能。具有连续读数能力的千赫兹帧速率的成

关于X-射线荧光仪探测器的介绍

   流(充)气正比计数器和闪烁计数器用于探测不同的元素,其中充气正比计数器一般是填充 Ar、Kr 等惰性气体;一定要注意此类计数器头部玻璃很容易破碎,不能碰撞;长期使用后,充气正比计数器头部容易吸附灰尘影响计数,应该定期清理。流气正比计数器是让探测器气体流动,一般是用1 μm~6 μm 厚的聚丙烯

简介闪烁X射线探测器的工作原理

  闪烁探测器的工作原理是:放射线入射到闪烁体后发出荧光;荧光光子被收集到光电倍增管的光阴极,通过光电效应转换出光电子;光电子通过电子运动并在光电倍增管各级间倍增,最后在阳极输出回路输出信号。闪烁探测器的探测动态范围很宽,对能量在1eV到1GeV范围内的辐射粒子都适用[8],如今己成为最常用的探测器

X射线探测器的基本参数

  能量—电荷系数  X射线在介质物质中平均得到的电荷(N)与损耗的能量(E)的比值,被我们称为能量—电荷转换系数。由于能量—电荷转换具有统计性,所以一般表示为平均值。  能量分辨率  X射线探测器中最为重要的系统参数便是能量分辨率,能量分辨率反映了探测器对不同类型的入射粒子的能量分辨能力。能量分辨

“钙钛矿”探测器大幅减少X射线剂量

  记者近日从华中科技大学获悉,该校武汉光电国家实验室(筹)研发出一种新型钙钛矿辐射探测器,该探测器具有高灵敏度、无铅化特点,且其材料相比制造闪烁晶体所用的稀土材料更加低廉易制取,应用到医学和安检成像领域,可大幅减少X射线剂量对人体的伤害。  据介绍,钙钛矿材料,其实不含钙也不含钛,它是一类具有钙钛

X射线显微镜的探测器的介绍

  各种探测器都可用,如感光胶片、影像板(Image plate, IP)、影像增强器、半导体探测器(CCD,电荷偶合器) 等。当然,宏观用的和微观用的在结构和参数上是不同的。  X 射线显微镜可按使用的X 射线能量的高低分为软X 射线显微镜和硬X 射线显微镜。其构造基本相同,但研究对象有侧重。前者

关于X射线探测器的基本信息介绍

  X射线探测器主要是用于测量目标样品发出的X射线荧光,目前市场上已经有多种不同类型的X射线荧光分析探测器可用。能量色散X射线荧光光谱分析技术通常使用的为固态探测器,例如SI-PIN探测器或者硅漂移探测器(SSD)等。每种类型的探测器在不同的应用方面都具有不同的优劣势,因此并不存在最好与最差之分,只

X射线荧光光谱仪探测器简介

  X射线荧光光谱仪常用的探测器有流气正比计数器和闪烁计数器,流气正比计数器用于轻元素检测,闪烁计数器用于重元素检测。  流气正比计数器由金属圆筒(阴极)、金属丝(阳极)、窗口及探测气体(惰性气体)构成。阳极都制成均匀光滑的细丝线,一般由钨、钼、铂、金等稳定的金属丝制成。  流气正比计数器中一般选用

“新型CZT半导体X射线和γ射线探测器研制”专项通过验收

  科技部评估中心于2017年4月14日在北京组织了由我校主持完成的首批国家重大科学仪器设备开发专项“新型CZT半导体X射线和γ射线探测器研制”项目综合验收评审会。以中国工程院潘自强院士为验收专家组组长的13名评审专家对项目进行了严格审查,最终以97.4分顺利通过了项目综合验收。  该项目于2011

平面工艺Si电流型X射线探测器研制

该项目主要研究X射线能谱及时间谱测量、强流脉冲X射线束测量所需的平面工艺硅电流型探测器。主要工作在于模拟核爆中高功率Z-pinch等离子体辐射研究中测量等离子体产生的X射线能谱及时间谱和用于X光束诊断和高功率Z-pinch等离子体辐射研究。

科学家成功研制目前最薄X射线探测器

  澳大利亚科学家使用硫化锡(SnS)纳米片制造了迄今最薄的X射线探测器。新探测器厚度不到10纳米,具有灵敏度高、响应速度快的特点,有助于实现细胞生物学的实时成像。  SnS已经在光伏、场效应晶体管和催化等领域显示出巨大的应用前景。澳大利亚莫纳什大学、澳大利亚研究理事会(ARC)激子科学卓越中心的研

石墨烯钙钛矿新型X射线探测器问世

  据物理学家组织网17日消息,瑞士洛桑联邦理工学院的研究人员通过使用3D气溶胶喷射打印,开发了一种生产高效X射线探测器的新方法。这种新型探测器可以很容易地集成到标准微电子设备中,从而大大提高了医疗成像设备的性能。研究成果发表在美国化学学会科学月刊《ACS Nano》上。  这种新型探测器是由洛桑联

X射线能谱Si(Li)探测器污染问题的研讨

通常X射线能谱Si(Li)探测器经使用后,不可避免地会受到污染,污染可分为两类:探测器外部——Be窗口污染;探测器内部——Si(Li)晶体和场效应管的污染。前者主要是探测器在有油真空中使用,探测器的低温使油蒸气不断凝结在Be窗口上,形成一层油膜,形成探测器外部的污染。后者主要是探测器真空容器密封不完

二维X射线探测器的研制项目通过验收

  6月7日,中国科学院计划财务局组织专家对高能物理研究所承担的院重大科研装备研制项目“二维X射线探测器的研制”进行了现场验收。  二维X射线探测设备采用200mm×200mm气体电子倍增器膜(GEM)为主要探测部件,项目组经过多年潜心研究,开发了相关探测器的制作工艺,解决

硅漂移(SDD)阵列探测器X射线能谱测量诊断

采用最新的SDD探测器阵列测量HL-2A托卡马克等离子体软X射线(1~20keV)辐射的能谱,获得电子温度、Zeff、重金属杂质含量绝对值及其时、空分布。由于SDD探测器较之传统的Si(Li)探测器有体积小、计数率高(≥106/s),能量分辨和量子效率高,不需液氮冷却的特点,并采用高速ADC和海量缓

CdZnTe半导体探测器X射线能谱响应特性分析

CdZnTe是一种性能优异的高能射线探测材料,在空间科学、核安全以及核医学等众多领域有广泛的应用前景.本文选取了3枚不同等级的CdZnTe探测器,在详细阐述了CdZnTe探测器工作原理的基础上,对比分析了他们的能谱响应曲线和载流子输运特性的关系.重点分析了CdZnTe探测器能量分辨率、电荷收集效率和

X荧光光谱仪三种X射线探测器的比较及应用

 X荧光光谱仪是测定材料发光性能的基本设备。主要包括光源、激发单色器、样品池、荧光单色器及探测器等主要部件。而探测器是很重要的一环,它的重要作用是接受和分辨信号,由于探测器性能的不同,在选用探测器时,就需要综合考虑多种因素。    好的探测器不仅需要具有高分辨率和高计数率,还需要有较宽的元素分析范围

X射线荧光分析中,如何调整探测器显示的能量范围

你看一下半导体探测器上面有没有能量范围旋钮,有的话就可以直接在上面调节。没有就要调节软件,打开分析软件,找到energy range或energy region,调节至0——100Kev即可。

SDD探测器在X射线荧光光谱仪的应用

   硅漂移探测器(SiliconDriftDetector,简称SDD)是半导体探测器的一种;    用来探测X射线,广泛应用在能量色散型X射线荧光光谱仪(XRF)或者X射线能谱仪(EDS)上。    XRF合金分析仪使用了大面积的SDD探测器之后,分析速度快速的提高2倍,使得分析数据的稳定性

X射线荧光光谱仪的探测器应该如何选择

X射线荧光光谱是一种常用的光谱技术,既可用于材料的组成成分分析,又可用于涂层和多层薄膜厚度的测量等。对于不同的应用用途,X射线荧光光谱仪体系中探测器的选择也不尽相同。对于定性分析往往需要用到硅漂移探测器。硅漂移探测器(SDDs)能够提高低能量敏感度,使得X射线荧光光谱技术可以对一些低原子序数元素进行

SDD探测器在X射线荧光光谱仪的应用

   硅漂移探测器(SiliconDriftDetector,简称SDD)是半导体探测器的一种;    用来探测X射线,广泛应用在能量色散型X射线荧光光谱仪(XRF)或者X射线能谱仪(EDS)上。    XRF合金分析仪使用了大面积的SDD探测器之后,分析速度快速的提高2倍,使得分析数据的稳定性

揭示宇宙演化和时空结构:X射线和探测器将发射

原文地址:http://news.sciencenet.cn/htmlnews/2023/9/507950.shtm XRISM艺术图。图片来源:欧洲空间局  科技日报北京9月5日电 (记者刘霞)据物理学家组织网4日报道,X射线成像和光谱任务(XRISM)探测器将于9月7日发射,以观测宇宙中