上海光机所3微米激光晶体研究获进展

近期,中国科学院上海光学精密机械研究所微纳光电子功能材料实验室在3微米激光晶体研究中取得进展。 近年来,无序晶体材料以超宽带的发光特性,成为超快激光领域重要的增益介质。ABCO4型(A=Ca,Sr,Ba;B=稀土元素;C=Ga,Al或过渡元素)激光晶体以高的结构无序度、优良的热学性能和较低的声子能量,被认为是有可能获得商用发展的超快激光增益介质,可应用于医疗、军事、工业、科研等领域。随着1.15微米半导体激光技术的发展,钬离子(Ho3+)3微米中红外发光的泵浦问题得以解决。因此,研究钬掺杂CaGdAlO4晶体(Ho:CaGdAlO4)对于实现直接激光二极管泵浦的中红外超快激光具有实用价值。 研究团队采用提拉法生长Ho:CaGdAlO4和Ho,Pr:CaGdAlO4晶体,分析晶体质量、结构、溶质分凝与偏振光谱性能。Ho3+:5I6→5I7跃迁呈宽带荧光特性,发射波长从2750nm延伸至3000nm,为中红外超短脉冲的产生提......阅读全文

激光晶体的结构和特性

激光晶体所用的基质晶体主要有氧化物和氟化物。作为基质晶体除要求其物理化学性能稳定,易生长出光学均匀性好的大尺寸晶体,且价格便宜,但要考虑它与激活离子间的适应性,如基质阳离子与激活离子的半径、电负性和价态应尽可能接近。此外,还要考虑基质晶场对激活离子光谱的影响。对于某些具有特殊功能的基质晶体,掺入激活

上海光机所3微米激光晶体研究获进展

  近期,中国科学院上海光学精密机械研究所微纳光电子功能材料实验室在3微米激光晶体研究中取得进展。  近年来,无序晶体材料以超宽带的发光特性,成为超快激光领域重要的增益介质。ABCO4型(A=Ca,Sr,Ba;B=稀土元素;C=Ga,Al或过渡元素)激光晶体以高的结构无序度、优良的热学性能和较低的声

主办EXPO-2024上海激光晶体展官网」

展会概况展会名称:2024中国(上海)国际激光智能制造技术与设备展览会展会时间:2024年11月18-20日 论坛时间:2024年11月18-19日 展会地点:上海新国际博览中心展会规模:50,000平方米、800家展商、90,000名专业观众  关于展会展会概况随着激光设备产业快速发展,让激光加工

激光晶体的主要组成及发展方向探讨

  激光晶体及其元器件是光电子产业的重要基础材料,是固体激光器发出激光的核心元器件。由于激光晶体具有光学均匀性好、机械性能好、物化稳定性高、热导性好等优点,目前仍是固体激光器的热门材料,因此广泛用于工业、医疗、科研、通讯和军事等领域。如激光测距、激光目标指示、激光探测、激光打标、激光加工(包括切割、

激光晶体及晶振相关新名词解读

  激光晶体是晶体激光器的工作物质,是能够将外界提供的能量通过光学谐振腔转化为在空间和时间上相干的、具有高度平行性和单色性激光的晶体材料。激光技术源于20世纪60年代,激光器与原子能、半导体、计算机并称20世纪新四大发明,激光技术广泛应用于材料加工与光刻、通信与光存储、科研与军事、医疗与美容、仪器与

激光晶体的聚光系统及滤光系统说明

   激光晶体的核心,是由激活粒子(都为金属)和基质两部分组成,激活粒子的能级结构决定了激光的光谱特性和荧光寿命等激光特性,基质主要决定了工作物质的理化性质。根据激活粒子的能级结构形式,可分为三能级系统(如红宝石激光器)与四能级系统(如Er:YAG激光器)。工作物质的形状目前常用的主要有圆柱形、平板

新型三价铒掺杂中红外激光晶体及2.7微米激光调Q获进展

  近日,中国科学院合肥物质科学研究院安徽光学精密机械研究所研究员孙敦陆课题组在探索新型三价铒(Er3+)掺杂中红外激光晶体及2.7微米激光调Q等方面取得一系列进展:采用提拉法生长了高浓度Er3+掺杂镥钪镓石榴石激光晶体,并实现了较高光束质量的2.79微米激光输出;采用LGS晶体作为调Q晶体,在氙灯

制作晶体新方法:混合物激光分离法

  据悉,科学家们已经通过激光成功将混合物中的两种液体分开;他们表示这将是处理物质和创造晶体的全新方法。图片来源于网络  日前在自然化学期刊(Nature Chemistry)上发表的一篇论文中,来自英国格拉斯哥大学的研究人员提出了一种使用激光器分离和创造新阶段的新方法。晶体的生产在科技领域至关重要

稀土掺杂氟化物中红外激光晶体研究取得进展

  1.8~3 μm中红外激光由于具备处于大气窗口波段、对人眼安全、对大气分子敏感以及液态水分子强吸收等特性,在雷达、激光通信、环境监测以及高精度手术等领域具有重要的应用价值。近日,中国科学院上海硅酸盐研究所研究员苏良碧课题组与山东师范大学、山东大学、哈尔滨工业大学等机构合作,基于“稀土发光离子局域

上海硅酸盐所中红外激光晶体研究取得进展

  中红外激光(2~5μm)覆盖多个大气传输窗口及众多分子化学键吸收峰“指纹”区域,在空间光通讯、环境监测、医疗、军事等领域均有重要的应用前景。产生中红外激光的技术众多,其中基于直接泵浦稀土掺杂晶体的中红外激光技术,具有结构简单、可连续输出、光束质量高等优点。直接泵浦铒离子(Er3+)掺杂激光晶体是

合肥研究院2.79微米中红外激光晶体研究取得进展

  近期,中国科学院合肥物质科学研究院安徽光学精密机械研究所激光技术中心研究员孙敦陆课题组在2.79微米中红外激光晶体研究中取得系列进展。  2.7微米至3微米中红外激光在光谱分析、气体检测、激光医疗及光参量振荡泵浦等方面有重要的应用前景。在前期研究工作的基础上,孙敦课题组进一步优化了新型高效抗辐射

梯度浓度掺杂的钇铝石榴石晶体激光系统

  近日,中国科学院合肥物质科学研究院健康与医学技术研究所江海河课题组与安徽光学精密机械研究张庆礼课题组合作,设计研制了梯度浓度掺杂的钇铝石榴石晶体(Nd:YAG)激光系统,实现了高重复频率电光调Q激光输出。相比传统均匀掺杂晶体,梯度浓度晶体显著提高了输出平均功率和峰值功率,并获得了高光束质量的激光

梯度浓度掺杂的钇铝石榴石晶体激光系统

  近日,中国科学院合肥物质科学研究院健康与医学技术研究所江海河课题组与安徽光学精密机械研究张庆礼课题组合作,设计研制了梯度浓度掺杂的钇铝石榴石晶体(Nd:YAG)激光系统,实现了高重复频率电光调Q激光输出。相比传统均匀掺杂晶体,梯度浓度晶体显著提高了输出平均功率和峰值功率,并获得了高光束质量的激光

追踪深紫外固态激光源研制:从一个晶体开始

由中科院承担的深紫外固态激光源系列前沿装备日前通过验收,我国成为世界上唯一能够制造实用化深紫外全固态激光器的国家。 ■本报记者 陆琦  “这是我国自主研发高精尖仪器的一个成功范例。”9月6日,由中科院承担的国家重大科研装备研制项目——“深紫外固态激光源前沿装备研制项目”通过验收,验收委员会

原子晶体的晶体类型

某些金属单质:晶体锗(Ge)等。某些非金属化合物:氮化硼(BN)晶体、碳化硅、二氧化硅等。非金属单质:金刚石、晶体硅、晶体硼等。

原子晶体的晶体特点

在这类晶体中,不存在独立的小分子,而只能把整个晶体看成一个大分子。由于原子之间相互结合的共价键非常强,要打断这些键而使晶体熔化必须消耗大量能量,所以原子晶体一般具有较高的熔点,沸点和硬度,在通常情况下不导电,也是热的不良导体,熔化时也不导电,但半导体硅等可有条件的导电。原子间不再以紧密的堆积为特征,

激光程控形状记忆光子晶体的无墨彩写与复印实现

  近日,中国科学院深圳先进技术研究院纳米调控与生物力学研究中心研究员杜学敏团队实现激光程控形状记忆光子晶体的无墨彩写与复印:利用激光即可在光子晶体智能材料上实现无墨彩色直写和复印功能,有望拓展光子晶体在信息存储等领域的应用,相关研究结果以Inkless Multi-color writing an

原子晶体的晶体结构

结构特征:空间立体网状结构(如金刚石、晶体硅、二氧化硅等)。原子晶体的结构特点:①由原子直接构成晶体,所有原子间只靠共价键连接成一个整体。②由基本结构单元向空间伸展形成空间网状结构。③破坏共价键需要较高的能量。在原子晶体的晶格结点上排列着中性原子,原子间以坚强的共价键相结合,如单质硅(Si)、金刚石

“蓝绿激光器用钡铋硼酸盐晶体的研究”项目通过验收

  3月1日,由中科院新疆理化技术研究所光电功能材料团队承担的自治区高技术研究与发展项目“蓝绿激光器用钡铋硼酸盐晶体的研究”通过专家组验收。   该项目充分利用新疆丰富的钡、铋和硼矿资源,采用高温固相法合成出了硼酸钡铋(BBB)化合物纯相粉末,并通过大量实验找到了适合钡铋硼酸盐

利用三维飞秒激光光刻技术制备纳米晶体结构

  材料本身的光学性质不仅取决于其化学性质,还取决于其亚波长结构。由此而来的诸如光子晶体和超材料等,拓展了人们对于光学结构和光学材料的认识,展现出不同于自然材料的新奇现象和功能。然而,在过去的研究中,光学晶体的纳米结构集中于材料的二维表面。这是因为应力诱导的裂纹形成和传播使得高精度的三维体积加工具有

“晶体与激光在产业界的应用”主题沙龙在理化所举行

“晶体与激光在产业界的应用”主题沙龙现场  10月28日下午,由中关村街道办事处主办,中关村地区企业联合会、中国科学院理化技术研究所承办的“晶体与激光在产业界的应用”主题沙龙在理化技术研究所举行,来自政府、企业、研究所的各方代表二十余人参加了主题沙龙活动。理化所副所长兼党委副书记赵震

晶体,准晶体,非晶体X一射线衍射实验的区别

晶体,准晶体,非晶体这三种物质,如果仅用肉眼是难以分辨的。固体物质是否为晶体,一般用X射线衍射法予以鉴定。晶体会对X射线发生衍射,非晶体不会对X射线发生衍射。可以通过有无衍射现象来区分晶体和非晶体。至于准晶体,它是一种介于晶体和非晶体之间的固体。用X光对固体进行结构分析,它和晶体、非晶体的结构截然不

晶体,准晶体,非晶体X一射线衍射实验的区别

晶体,准晶体,非晶体这三种物质,如果仅用肉眼是难以分辨的。固体物质是否为晶体,一般用X射线衍射法予以鉴定。晶体会对X射线发生衍射,非晶体不会对X射线发生衍射。可以通过有无衍射现象来区分晶体和非晶体。至于准晶体,它是一种介于晶体和非晶体之间的固体。用X光对固体进行结构分析,它和晶体、非晶体的结构截然不

非晶体与晶体的主要差异

本质区别晶体有自范性,非晶体无自范性。物理性质晶体是内部质点在三维空间成周期性重复排列的固体,具有长程有序,并成周期性重复排列。非晶体是内部质点在三维空间不成周期性重复排列的固体,具有近程有序,但不具有长程有序。外形为无规则形状的固体。晶体有各向异性,非晶体多数是各向同性。晶体有固定的熔点,非晶体无

原子晶体的晶体结构介绍

  结构特征:空间立体网状结构(如金刚石、晶体硅、二氧化硅等)。  原子晶体的结构特点:  ①由原子直接构成晶体,所有原子间只靠共价键连接成一个整体。  ②由基本结构单元向空间伸展形成空间网状结构。  ③破坏共价键需要较高的能量。  在原子晶体的晶格结点上排列着中性原子,原子间以坚强的共价键相结合,

光子时间晶体放大光线可以增强通信设施和激光器的能力

研究人员已经开发出一种创建光子时间晶体的方法,并表明这些奇异的人造材料能够放大照在它们身上的光线。发表在《科学进展》杂志上的一篇论文中描述了这些发现,它们可能会带来更高效和更强大的无线通信手段,并大大改善激光器的效率。二维光子时间晶体如何提升光波的图示。资料来源:Xuchen Wang/阿尔托大学时

中科院功能晶体与激光技术重点实验室开放课题开始申请

  中国科学院“功能晶体与激光技术”重点实验室面向国家重大需求、高新技术产业、科技发展前沿,以材料科学和激光物理为基础,以无机功能晶体材料和全固态激光为导向,开展非线性光学晶体等先进功能材料和全固态激光器件、技术等应用基础性研究和高技术前沿与发展研究。2011—2012年度拟开放课题,申请事宜如下:

关于晶体结构晶体的共性介绍

  如果将大量的原子聚集到一起构成固体,那么显然原子会有无限多种不同的排列方式。而在相应于平衡状态下的最低能量状态,则要求原子在固体中有规则地排列。若把原子看作刚性小球,按物理学定律,原子小球应整齐地排列成平面,又由各平面重叠成规则的三维形状的固体。  人们很早就注意一些具有规则几何外形的固体,如岩

晶体和非晶体的本质区别

晶体有自范性,非晶体无自范性。

晶体和非晶体的结构特性差异

晶体与非晶体之间在一定条件下可以相互转化。例如,把石英晶体熔化并迅速冷却,可以得到石英玻璃。将非晶半导体物质在一定温度下热处理,可以得到相应的晶体。可以说,晶态和非晶态是物质在不同条件下存在的两种不同的固体状态,晶态是热力学稳定态。