DNA损伤的改变类型

点突变(point mutation)指DNA上单一碱基的变异。嘌呤替代嘌呤(A与G之间的相互替代)、嘧啶替代嘧啶(C与T之间的替代)称为转换(transition);嘌呤变嘧啶或嘧啶变嘌呤则称为颠换(transvertion)。缺失(deletion)指DNA链上一个或一段核苷酸的消失。插入(insertion)指一个或一段核苷酸插入到DNA链中。在为蛋白质编码的序列中如缺失及插入的核苷酸数不是3的整倍数,则发生读框移动(reading frame shift),使其后所译读的氨基酸序列全部混乱,称为移码突变(frame-shift mutaion)。倒位或转位(transposition) 指DNA链重组使其中一段核苷酸链方向倒置、或从一处迁移到另一处。双链断裂已如前述,对单倍体细胞一个双链断裂就是致死性事件。......阅读全文

DNA损伤的改变类型

点突变(point mutation)指DNA上单一碱基的变异。嘌呤替代嘌呤(A与G之间的相互替代)、嘧啶替代嘧啶(C与T之间的替代)称为转换(transition);嘌呤变嘧啶或嘧啶变嘌呤则称为颠换(transvertion)。缺失(deletion)指DNA链上一个或一段核苷酸的消失。插入(in

DNA损伤的改变类型介绍

点突变(point mutation)指DNA上单一碱基的变异。嘌呤替代嘌呤(A与G之间的相互替代)、嘧啶替代嘧啶(C与T之间的替代)称为转换(transition);嘌呤变嘧啶或嘧啶变嘌呤则称为颠换(transvertion)。缺失(deletion)指DNA链上一个或一段核苷酸的消失。插入(in

关于DNA损伤修复的类型介绍

  DNA分子的损伤类型有多种。UV照射后DNA分子上的两个相邻的胸腺嘧啶(T)或胞嘧啶(C)之间可以共价键连结形成环丁酰环,这种环式结构称为二聚体。胸腺嘧啶二聚体的形成是 UV对DNA分子的主要损伤方式。  Χ射线、γ射线照射细胞后,由细胞内的水所产生的自由基既可使DNA分子双链间氢键断裂,也可使

化学因素引起的DNA损伤类型介绍

化学因素对DNA损伤的认识最早来自对化学武器杀伤力的研究,以后对癌症化疗、化学致癌作用的研究使人们更重视突变剂或致癌剂对DNA的作用。1、烷化剂对DNA的损伤 烷化剂是一类亲电子的化合物,很容易与生物体中大分子的亲核位点起反应。烷化剂的作用可使DNA发生各种类型的损伤:①碱基烷基化。烷化剂很容易将烷

DNA损伤的原因分析

DNA存储着生物体赖以生存和繁衍的遗传信息,因此维护DNA分子的完整性对细胞至关紧要。外界环境和生物体内部的因素都经常会导致DNA分子的损伤或改变,而且与RNA及蛋白质可以在细胞内大量合成不同,一般在一个原核细胞中只有一份DNA,在真核二倍体细胞中相同的DNA也只有一对,如果DNA的损伤或遗传信息的

DNA损伤现象的概念

DNA损伤是复制过程中发生的DNA核苷酸序列永久性改变,并导致遗传特征改变的现象。情况分为:substitutation (替换)deletion (删除)insertion (插入)exon skipping (外显子跳跃)

DNA损伤的原因分析

DNA存储着生物体赖以生存和繁衍的遗传信息,因此维护DNA分子的完整性对细胞至关紧要。外界环境和生物体内部的因素都经常会导致DNA分子的损伤或改变,而且与RNA及蛋白质可以在细胞内大量合成不同,一般在一个原核细胞中只有一份DNA,在真核二倍体细胞中相同的DNA也只有一对,如果DNA的损伤或遗传信息的

分析DNA损伤的原因

  DNA存储着生物体赖以生存和繁衍的遗传信息,因此维护DNA分子的完整性对细胞至关紧要。外界环境和生物体内部的因素都经常会导致DNA分子的损伤或改变,而且与RNA及蛋白质可以在细胞内大量合成不同,一般在一个原核细胞中只有一份DNA,在真核二倍体细胞中相同的DNA也只有一对,如果DNA的损伤或遗传信

DNA损伤的后果介绍

突变或诱变对生物可能产生4种后果:①致死性;②丧失某些功能;③改变基因型(genotype)而不改变表现型(phenotye);④发生了有利于物种生存的结果,使生物进化。

CT扫描损伤DNA?

  CT扫描,即电子计算机断层扫描,通过横断面X射线对多种疾病进行诊断,包括胸痛、骨折和消化系统问题等等。  《美国心脏病学会杂志》一篇学术论文报道:CT扫描存在副作用——损伤DNA!  斯坦福大学的研究人员以67例需要接受CT扫描的病患作为试验对象:患者接受全身且最低辐射量扫描后,研究人员检测她们

细胞损伤时线粒体数量的改变介绍

  线粒体的平均寿命约为10天.衰亡的线粒体可通过保留的线粒体直接分裂为二予以补充.  在病理状态下,线粒体的增生实际上是对慢性非特异性细胞损伤的适应性反应或细胞功能升高的表现.例如心瓣膜病时的心肌线粒体,周围血液循环障碍伴间歇性跛行时的骨骼肌线粒体的呈增生现象.  线粒体的增生也可见于某些肿瘤组织

简述细胞损伤时线粒体结构的改变

  线粒体嵴是能量代谢的明显指征,但嵴的增多未必均伴有呼吸链酶的增加.嵴的膜和酶平行增多反映细胞的功能负荷加重,为一种适应状态的表现;反之,如嵴的膜和酶的增多不相平行,则是胞浆适应功能障碍的表现,此时细胞功能并不升高.  在急性细胞损伤时(大多为中毒或缺氧),线粒体的嵴被破坏;慢性亚致死性细胞损伤或

细胞损伤时核的大小的改变介绍

  核的大小通常反映着核的功能活性状态,功能旺盛时核增大,核浆淡染,核仁也相应增大和(或)增多.如果这种状态持续较久,则可出现多倍体核或形成多核巨细胞.多倍体核在正常情况下亦可见于某些功能旺盛的细胞,如肝细胞中可见约20%为多倍体核.在病理状态下,如晚期肝炎及实验性肝癌前期等均可见多倍体的肝细胞明显

关于DNA损伤修复的简介

  DNA损伤修复(repair of DNA damage)在多种酶的作用下,生物细胞内的DNA分子受到损伤以后恢复结构的现象。 DNA损伤修复的研究有助于了解基因突变的机制,衰老和癌变的原因,还可应用于环境致癌因子的检测。  2022年5月,中国科学院近代物理研究所材料研究中心微束技术与应用室在

关于DNA损伤的基本介绍

  DNA损伤是复制过程中发生的DNA核苷酸序列永久性改变,并导致遗传特征改变的现象。情况分为:substitutation (替换)deletion (删除)insertion (插入)exon skipping (外显子跳跃)  1、点突变(point mutation)  指DNA上单一碱基的

卫星DNA的主要类型

卫星DNA按其浮力密度的大小可以分成I、Ⅱ、Ⅲ、Ⅳ四类,其浮力密度分别是1.687,1.693,1.697和1.700g/cm3。各类卫星DNA都是由各种不同的重复序列家族所组成。卫星DNA通常是串联重复序列。卫星DNA按其重复单元的核苷酸的多少,可以分为两类。一类是小卫星DNA(minisatel

DNA损伤剂的定义和用途

中文名称DNA损伤剂英文名称DNA damaging agent定  义能作用于DNA,造成其结构的破坏并能引起突变的某些物理或化学因子。如紫外线、电离辐射和化学诱变剂等。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)

Cell:DNA损伤应答的新通路

  加州大学的科学家们在研究DNA损伤对高尔基体的影响时,发现了DNA损伤激活的新通路,这一通路影响着机体中细胞对化疗的应答。   包括化疗和放疗在内的标准癌症治疗策略,通过诱导细胞出现DNA损伤起作用。DNA损伤启动的信号通路会导致细胞死亡,人们正是在这一机制的基础上消灭癌细胞。更好地理解这些细

DNA分子的自发性损伤

DNA复制中的错误以DNA为模板按碱基配对进行DNA复制是一个严格而精确的事件,但也不是完全不发生错误的。碱基配对的错误频率约为10-1-10-2,在DNA复制酶的作用下碱基错误配对频率降到约10-5-10-6,复制过程中如有错误的核苷酸参入,DNA聚合酶还会暂停催化作用,以其3’-5’外切核酸酶的

简述DNA损伤修复的发现简史

  1949年A.凯尔纳偶然发现灰色链丝菌等微生物经紫外线(UV)照射后如果立即暴露在可见光下则可减少死亡。此后在大量的微生物实验中都发现了这种现象,并证明这是许多种微生物固有的DNA损伤修复功能,并把这一修复功能称为光复活。1958年R.L.希尔证明即使不经可见光的照射,大肠杆菌也能修复它的由紫外

DNA损伤修复对衰老的作用

  从DNA修复功能的比较研究中发现寿命长的动物(象、牛等)修复功能较强;寿命短的动物 (仓鼠、小鼠、鼩鼱等)修复功能较弱。人的DNA修复功能也很强,但到一定年龄后逐渐减弱,同时突变细胞数也相应增加,所以老年人癌的发病率也比较高。检测各年龄组正常人的染色体畸变率和 DNA修复功能证实了这一点。人类中

紫外线引起的DNA损伤

DNA分子损伤最早就是从研究紫外线的效应开始的。当DNA受到最易被其吸收波长(~260nm)的紫外线照射时,主要是使同一条DNA链上相邻的嘧啶以共价键连成二聚体,相邻的两个T、或两个C、或C与T间都可以环丁基环(cyclobutane ring)连成二聚体,其中最容易形成的是TT二聚体.。人皮肤因受

关于放射性心脏损伤的病理改变介绍

  现已证明,受到放射线照射的人和动物的心脏均有不同程度的病理变化,受损部位包括心包、心外膜、心内膜、甚至含有心脏瓣膜,还有传导系统及冠状动脉。一般损害与放射治疗的区域密切相关,以心包以及心肌的损害最为常见。  大体解剖  放射性心脏损伤者可见心包渗出和增厚,心内膜、外膜也有增厚,心室壁各层均有心肌

细胞损伤时细胞核的具体改变

  、核大小的改变 核的大小通常反映着核的功能活性状态,功能旺盛时核增大,核浆淡染,核仁也相应增大和(或)增多。如果这种状态持续较久,则可出现多倍体核或形成多核巨细胞。多倍体核在正常情况下亦可见于某些功能旺盛的细胞,如肝细胞中可见约20%为多倍体核。在病理状态下,如晚期肝炎及实验性肝癌前期等均可见多

细胞损伤时线粒体大小改变的相关介绍

  细胞损伤时最常见的改变为线粒体肿大.根据线粒体的受累部位可分为基质型肿胀和嵴型肿胀二种类型,而以前者为常见.  基质型肿胀时线粒体变大变圆,基质变浅,嵴变短变少甚至消失.在极度肿胀时,线粒体可转化为小空泡状结构.此型肿胀为细胞水肿的部分改变.光学显微镜下所谓的浊肿细胞中所见的细颗粒即肿大的线粒体

细胞化学词汇DNA损伤剂

中文名称:DNA损伤剂英文名称:DNA damaging agent定  义:能作用于DNA,造成其结构的破坏并能引起突变的某些物理或化学因子。如紫外线、电离辐射和化学诱变剂等。应用学科:生物化学与分子生物学(一级学科),核酸与基因(二级学科)

研究发现DNA损伤修复与DNA转录的协同作用

  最近,来自挪威科学技术大学的Barbara van Loon博士等人在遗传信息修复方面有了新发现,该发现发表在最近的《Nature Communications》杂志上。  Van Loon的研究小组发现,阅读DNA的分子元件和纠正DNA错误的分子元件可以协同工作。(图片来源:NTNU)  Va

特殊类型心脏病的心电图改变

  一、扩张型心肌病    扩张型心肌病(DCM)患者心电图特征可以概括为4点:①敏感性——即此类患者出现心电图异常的机率较高,国外学者认为心电图完全正常者可排除扩张型心肌病;②复杂性——除极、复极及心律均可出现异常;③易变性——同一患者可出现多种心律失常,尤其是房室、束支、分支组织多变;④缺乏

DNA微阵类型的介绍

  基因芯片的制作方式基本可分为以下几型:  Stanford型  由美国斯坦福大学开发的cDNA array的制作方法,将预先合成好的核酸探针布放于玻片载体上。 优点:设计较长的探针长度可增加专一性。 缺点:芯片密度较光罩法低,并须有良好的保存设计。  这种方法又可分为点制法与印制法。  点制法是

DNA微阵列的常见类型

Stanford型由美国斯坦福大学开发的cDNA array的制作方法,将预先合成好的核酸探针布放于玻片载体上。 优点:设计较长的探针长度可增加专一性。 缺点:芯片密度较光罩法低,并须有良好的保存设计。这种方法又可分为点制法与印制法。点制法是小规模生产或实验室自制的低密度芯片,以机械手臂上带有毛细作