小动物活体成像系统比较

分子影像产品的研究与发展,是伴随着分子影像成像理论和成像算法的发展而逐步发展的。在荧光标记的分子成像方面,目前世界上仅有少数实验室研制成功可以对小动物进行跟踪性在体荧光断层分子影像的系统,并接连在Nature/Science上发表一系列突破性研究进展。 近年来,国外某些公司改进了现有的体外荧光成像技术,发展出适用于动物体内的成像系统。荧光发光是通过激发光激发荧光基团到达高能量状态,而后产生发射光。常用的有绿色荧光蛋白(GFP)、红色荧光蛋白(DsRed)及其他荧光报告基团,标记方法与体外荧光成像相似。荧光成像具有费用低廉和操作简单等优点。 同生物发光在动物体内的穿透性相似,红光的穿透性在体内比蓝绿光的穿透性要好得多,近红外荧光为观测生理指标的最佳选择。现有技术采用不同的原理,尽量降低背景信号,获取机体中荧光的准确信息。目前以精诺真公司采用的光谱分离技术和GE-ART 公司的时域(time-domain, TD)光学......阅读全文

小动物活体成像系统比较

分子影像产品的研究与发展,是伴随着分子影像成像理论和成像算法的发展而逐步发展的。在荧光标记的分子成像方面,目前世界上仅有少数实验室研制成功可以对小动物进行跟踪性在体荧光断层分子影像的系统,并接连在Nature/Science上发表一系列突破性研究进展。  近年来,国外某些公司改进了现有的体外荧光成像

小动物活体成像系统怎么选择

小动物活体成像技术有很多,大概分为两大类:一类是用来获取解剖学结构信息的技术,可以获得物理结构,骨胳、器官位置大小等,比如说CT,核磁MRI,或者是超声;另一类是功能学成像技术,是用来获取功能学信息的,比如说细胞功能,bio-marker功能,器官功能等等,目前最常用的功能学技术包括光学成像,使用放

小动物活体成像系统怎么选择

小动物活体成像技术有很多,大概分为两大类:一类是用来获取解剖学结构信息的技术,可以获得物理结构,骨胳、器官位置大小等,比如说CT,核磁MRI,或者是超声;另一类是功能学成像技术,是用来获取功能学信息的,比如说细胞功能,bio-marker功能,器官功能等等,目前最常用的功能学技术包括光学成像,使用放

小动物活体成像

小动物活体成像主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。利用一套非常灵敏的光学检测仪器,让研究人员能够直

小动物活体成像

小动物活体成像   主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。利用一套非常灵敏的光学检测仪器,

如何选择小动物活体荧光成像系统

小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个动物进行长时间反复跟踪

如何选择小动物活体荧光成像系统

小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个动物进行长时间反复跟踪

如何选择小动物活体荧光成像系统

小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个动物进行长时间反复跟踪

如何选择小动物活体荧光成像系统

小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个动物进行长时间反复跟踪

如何选择小动物活体荧光成像系统?

  小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。     与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个

如何选择小动物活体荧光成像系统

小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个动物进行长时间反复跟踪

如何选择小动物活体荧光成像系统

小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个动物进行长时间反复跟踪

小动物活体成像技术

1、背景和原理1999年,美国哈佛大学Weissleder等人提出了分子影像学(molecular imaging)的概念——应用影像学方法,对活体状态下的生物过程进行细胞和分子水平的定性和定量研究。传统成像大多依赖于肉眼可见的身体、生理和代谢过程在疾病状态下的变化,而不是了解疾病的特异性分子事件。

小动物活体成像原理

体动物体内光学成像主要采用生物发光与荧光两种技术。生物发光是用荧光素酶基因(Luciferase)标记细胞或 DNA,而荧光技术则采用绿色荧光蛋白、红色荧光蛋白等荧光报告基因和 FITC、Cy5、Cy7 等荧光素及量子点 (quantumdot,QD) 进行标记。小动物活体成像技术是采用高灵敏度制冷

小动物活体成像原理

体动物体内光学成像主要采用生物发光与荧光两种技术。生物发光是用荧光素酶基因(Luciferase)标记细胞或 DNA,而荧光技术则采用绿色荧光蛋白、红色荧光蛋白等荧光报告基因和 FITC、Cy5、Cy7 等荧光素及量子点 (quantumdot,QD) 进行标记。小动物活体成像技术是采用高灵敏度制冷

MARS-近红外二区小动物活体成像系统

  品牌/产地:恒光智影/中国。  型号:MARS。  MARS近红外二区小动物活体成像系统采用顶级科研Teledyne Princeton Instruments牌InGaAs相机,其出色的量子效率与先进的噪声抑制技术为高品质成像提供保证。  产品概述:  MARS近红外二区小动物活体成像系统突破

小动物活体成像技术概览(四)

成像设备主要应用领域优点缺点PET报告基因表达,小分子示踪高灵敏性,同位素自然替代靶分子,可进行定量移动研究需要回旋加速器或发生器,相对低的空间分辨率,辐射损害,价格昂贵SPECT报告基因表达,小分子示踪同时使用多种分子探针,能同时成像,适于用作临床成像系统相对较低的空间分辨率,辐射损害生物体之发光

小动物活体成像技术概览(二)

光在哺乳动物组织内传播时会被散射和吸收,光子遇到细胞膜和细胞质时会发生折射现象,而且不同类型的细胞和组织吸收光子的特性并不一样。在偏红光区域, 大量的光可以穿过组织和皮肤而被检测到。利用灵敏的活体成像系统最少可以看到皮下的500个细胞,当然,由于发光源在老鼠体内深度的不同可看到的最少细胞数是不同

小动物活体成像技术概览(三)

2-4超声成像此外,超声分子影像学是近几年超声医学在分子影像学方面的研究热点。它是利用超声微泡造影剂介导来发现疾病早期在细胞和分子水平的变化,有利于人们更早、更准确地诊断疾病。通过此种方式也可以在患病早期进行基因治疗、药物治疗等,以期在根本上治愈疾病。2-5CT成像CT成像是利用组织的密度不同造成对

小动物活体成像技术概览(一)

1. 背景和原理:1999年,美国哈佛大学Weissleder等人提出了分子影像学(molecular imaging)的概念——应用影像学方法,对活体状态下的生物过程进行细胞和分子水平的定性和定量研究。传统成像大多依赖于肉眼可见的身体、生理和代谢过程在疾病状态下的变化,而不是了解疾病的特异性分子事

五种小动物活体成像专用设备特点、应用及优缺点比较-一

摘要:随着小动物成像技术的发展,活体小动物非侵袭性成像在临床前研究中发挥着越来越重要的作用。本文围绕五种小动物成像专用设备,综述其特点及主要应用,比较各种设备的优势和劣势,总结小动物活体成像设备的发展趋势。动物模型是现代生物医学研究中重要的实验方法与手段,有助于更方便、更有效地认识人类疾病的发生、发

五种小动物活体成像专用设备特点、应用及优缺点比较-二

可见光成像的主要缺点是二维?平面成像及不能绝对定量,新一代荧光分子断层成像(fluorescence molecular tomography, FMT)采用特定波长的激发光激发荧光分子产生荧光,通过图像重建提供目标的深度信息和对目标物进行立体成像,并且可以定量及多通道成像,能够在毫米量级的

五种小动物活体成像专用设备特点、应用及优缺点比较-三

4.小动物MRIMRI是依据所释放的能量在物质内部不同结构环境中不同的衰减,而绘制出物体内部的结构图像。相对于CT,MRI具有无电离辐射性(放射线)损害,高度的软组织分辨能力,无需使用对比剂即可显示血管结构等独特优点。对于核素和可见光成像,小动物MRI的优势是具有微米级的高分辨率及低毒性;在某些应用

小动物活体成像技术的应用领域

癌症与抗癌药物研究 ,免疫学与干细胞研究 ,细胞凋零 ,病理机制及病毒研究 ,基因表达和蛋白质之间相互作用 ,转基因动物模型构建 ,药效评估 ,药物甄选与预临床检验 ,药物配方与剂量管理 ,肿瘤学应用 ,生物光子学检测 ,食品监督与环境监督等。

小动物超声成像系统(图)

1、【仪器名称】:小动物超声成像系统。2、【仪器型号】:Vevo 770。3、【生产厂家】:visualsonics Co. Ltd.4、【检测适用范围】:该系统为一套小动物灰阶及血流参数的影像系统,用来进行小动物胚胎及肿瘤血流的评估。利用高频超音波精细的分辨率对人体及小动物各表层组织的观察已经开始

活体荧光成像系统介绍(二)

五、生产厂家1.美国KODAKImage Station In-Vivo FX多功能活体成像系统1.1简介:该系统采用了Kodak公司科研级的超高灵敏度4百万象素冷CCD,高安全标准的X-光模块,以及ZL的放射性同位素磷屏等技术,实现了化学发光、全波长范围荧光、放射性同位素以及X-光等的多功能检测功

精诺真活体成像系统

1、【仪器名称】:精诺真活体成像系统。2、【仪器型号】:IVIS 200。3、【生产厂家】:美国精诺真(Xenogen,Inc.)公司(龙脉得生物技术有限公司代理)。4、【检测适用范围】:用于提供LPTA动物模型靶基因在体内的实时表达和对候选药物的准确反应,还可以用来评估候选药物和其他化合物的毒性。

精诺真活体成像系统

1、【仪器名称】:精诺真活体成像系统。 2、【仪器型号】:IVIS 200。 3、【生产厂家】:美国精诺真(Xenogen,Inc.)公司(龙脉得生物技术有限公司代理)。 4、【检测适用范围】:用于提供LPTA动物模型靶基因在体内的实时表达和对候选药物的准确反应,还可以用来评估候选药物和其他化

活体GFP绿色荧光成像系统

  系统提供动物活体绿色荧光蛋白的实时观察与成像等一系列的荧光检测。能够应用在像深度肿瘤,大动物等活体肿瘤追踪观察成像研究。    该设备是一个高灵敏度的图像成像工作系统,主要利用特定波长的激光进行激发后,通过高灵敏度的致冷CCD进行实时检测后,获得所需的各类 特性的图像,有利于进一步的分析作用 。

活体荧光成像系统介绍(一)

一、  技术简介活体生物荧光成像技术(in vivo bioluminescence imaging)是近年来发展起来的一项分子、基因表达的分析检测系统。它由敏感的CCD及其分析软件和作为报告子的荧光素酶(luciferase)以及荧光素(luciferin)组成。利用灵敏的检测方法,让研究人员