Antpedia LOGO WIKI资讯

破解提高电池容量的科学难题

让手机等电子产品拥有更长的待机和使用时间,让电动汽车拥有更长的续航里程,让储能装置存储更多的电量……一切应用场景,都在呼唤更高容量的电池。定量研究揭示晶格氧反应的高度可逆性 以锂离子电池为代表的新型二次电池如今已经和每个人的生活密切相关,具有更高容量在锂离子电池和新兴的钠离子电池的主要组成部分中,以过渡金属氧化物为主的正极材料是提高能量密度的主要制约因素。因此,如何提高正极材料的容量是当今科学界、产业界和全社会共同关注的焦点。 近日,东北大学冶金学院副教授代克化与美国劳伦斯伯克利国家实验室的研究人员合作,在影响高容量锂/钠离子电池正极材料循环寿命的关键问题上取得重要理论突破。该项成果于近日在细胞出版社旗下能源领域旗舰期刊Joule上在线发表,业内评价这一研究将为人们进一步开发高容量、长寿命的新型二次电池正极材料提供方向性理论依据。 关注焦点问题 在电池充放电过程中,随着电流的发生,电池内部也在发生得失电子的氧化还原反......阅读全文

长春应化所锂-氧电池反应机理研究获进展

  锂-氧电池与锂-离子电池相比,具有更高的理论比能量,吸引了学术界和工业界的广泛关注。目前,锂-氧电池表现为循环稳定性较差,这归因于氧还原物种(O2−,LiO2和Li2O2)和电池组件(电极材料和电解液)之间的副反应。若要消除这些副反应,需要从本质上理解氧还原物种的化学性质。O2−和Li2O2已从

3D无序阳离子骨架实现锂离子电池稳定氧变价反应

  中国科学院物理研究所、松山湖材料实验室依托中国散裂中子源在锂离子电池材料结构研究方面取得新进展。  锂离子电池因其各方面的优势,已经被作为储能领域的首选技术。不断提升其能量密度一直是各国科学家和技术人员努力的方向。锂离子电池的能量密度正相关于单位质量正极材料脱嵌锂的数量。众多研究表明,富锂氧化物

什么是析氧反应,析氢反应

吸氧腐蚀和析氢腐蚀吸氧腐蚀典型案例就是暴露在空气中的铁会生锈,或者一半在海水,一般在空气中的铁,在海水中的部分会生锈析氢腐蚀最常见的就是锌在盐酸或者稀硫酸中会发生反应生成氢气一个是吸收氧气,就是与氧发生反应一个是析出氢气,就是反应生成氢气环境是酸性溶液或者中性溶液,吸氧腐蚀是弱酸性溶液或中性溶液,析

什么是析氧反应

什么是析氧反应,析氢反应,帮忙各举一个例子吸氧腐蚀:消耗氧气的腐蚀(类似金属被氧气氧化)析氢腐蚀:放出氢气的腐蚀(类似金属置换酸中的氢)

厌氧反应器介绍

  废水厌氧生物处理是环境工程与能源工程中的一项重要技术,是有机废水强有力的处理方法之一,过去,它多用于城市污水厂的污泥、有机废料及其部分高浓度有机废水的处理,在建筑物形式上主要采用普通消化池,由于存在水力停留时间长、有机负荷低等缺点,较长时间限制了它在废水处理中的应用,20世纪70年代以来,世界能

厌氧反应器介绍

废水厌氧生物处理是环境工程与能源工程中的一项重要技术,是有机废水强有力的处理方法之一,过去,它多用于城市污水厂的污泥、有机废料及其部分高浓度有机废水的处理,在建筑物形式上主要采用普通消化池,由于存在水力停留时间长、有机负荷低等缺点,较长时间限制了它在废水处理中的应用,20世纪70年代以来,世界能源短

厌氧反应器介绍

  废水厌氧生物处理是环境工程与能源工程中的一项重要技术,是有机废水强有力的处理方法之一,过去,它多用于城市污水厂的污泥、有机废料及其部分高浓度有机废水的处理,在建筑物形式上主要采用普通消化池,由于存在水力停留时间长、有机负荷低等缺点,较长时间限制了它在废水处理中的应用,20世纪70年代以来,世界能

物理所等在钠离子电池正极材料研究中取得进展

  钠离子电池因其原材料储量丰富,价格低廉,近些年受到了越来越多研究人员的关注。在诸多钠离子正极材料体系中,层状氧化物因其易合成、综合性能较好等特点,是目前最具应用潜力的体系。然而由于钠离子质量较大,钠离子电池层状氧化物正极材料的能量密度与锂离子电池层状正极材料有一定差距,进一步提升钠离子电池材料的

厌氧反应器的选择

厌氧反应器的选择 由于屠宰废水的进水水质中COD和 BOD浓度很高,需要设置厌氧工艺作为好氧工艺处理的前处理,在厌氧处理器的选择上有一般的UASB工艺以及厌氧接触法(AC)的比较。厌氧接触工艺又称厌氧活性污泥法,是对传统消化池的一种改进。在传统消化池中,水利停留时间等于固体停留时间,而在厌氧接触工艺

单线态氧的相关反应

1.主要是1,2-、1,3-及1,4-烯烃的加成:R2C=CR`2+1O2----->---hv或△--->R2CO+R`2CO2.1O2在体内会不断生成与猝灭,并且在多种生理及病理过程中起作用(包括好的和坏的)。例如,在染料光敏化氧化条件下,各种生物成分(蛋白质、氨基酸、核酸等)很容易与氧反应而使