Antpedia LOGO WIKI资讯

遗传发育所泛素连接酶调控脱落酸信号转导研究取得进展

脱落酸在植物对逆境胁迫应答反应方面起重要调控作用,关于其信号转导途径的研究对深入认识植物适应性生长的基本规律和植物抗逆性育种具有重要意义。 继2009年报道了E3泛素连接酶RHA2a的生理功能之后,中科院遗传与发育生物学研究所李传友实验室和谢旗实验室合作,发现拟南芥E3泛素连接酶RHA2b与RHA2a类似,在脱落酸信号转导途径中起重要作用。RHA2b与RHA2a在氨基酸水平具有较高的同源性(65%),但在表达模式和生理功能方面表现特异性:RHA2a主要在种子萌发及幼苗早期生长中起作用,RHA2b主要在生长发育后期起作用。功能研究表明,RHA2a与RHA2b协同调控植物对盐胁迫和干旱胁迫的抗性反应。遗传学分析表明,这两个基因在脱落酸信号转导途径中位于蛋白磷酸酶ABI2的下游,与转录因子ABI3/4/5的作用平行。 该项研究对深入认识脱落酸信号转导的分子机制提供了新的见解,也对作物抗逆育种具有指导作用。......阅读全文

遗传发育所在脱落酸受体调控研究中取得进展

  脱落酸(Abscisic acid,ABA)作为主要的植物激素之一,参与植物生长发育、各种生物和非生物胁迫应对过程。在不良环境胁迫下,植物细胞中ABA含量的增多,是植物感受和应对外界环境的信号。因此,通过对ABA信号转导通路分子机理的探索和研究,有望发掘相关功能基因,培育抗旱耐盐等优良性状的作物

组蛋白修饰调控水稻干旱应答新机制获揭示

  华中农业大学教授熊立仲课题组在《分子植物》在线发表研究论文,揭示了组蛋白单泛素化修饰精细调控水稻干旱应答的新机制,对于探究植物抗旱分子机理和抗旱遗传改良具有十分重要的意义。  水稻作为主要的粮食作物和科学研究的模式植物,要提高自身抗旱性来增强粮食产量的稳产性,其抗旱应答分子机制研究尤为重要。  

中国农大特聘教授最新PNAS文章

  来自中国农业大学,美国亚利桑那州大学的研究人员发表了题为“Sumoylation of transcription factor MYB30 by the small ubiquitin-like modifier E3 ligase SIZ1 mediates abscisic acid

兰州大学PLOS解析赤霉素信号转导分子机理

  2014年7月10日,国际学术期刊《PLOS Genetics》(五年影响因子9.44)在线发表了兰州大学的一项最新研究成果“Arabidopsis DELLA Protein Degradation Is Controlled by a Type-One Protein Phosphatase

兰州大学PLOS解析赤霉素信号转导分子机理

  2014年7月10日,国际学术期刊《PLOS Genetics》(五年影响因子9.44)在线发表了兰州大学的一项最新研究成果“Arabidopsis DELLA Protein Degradation Is Controlled by a Type-One Protein Phosphatase

研究揭示赤霉素和脱落酸调控水稻株型的分子机制

  近日,《植物细胞》(The Plant Cell)在线发表了中国农业科学院作物科学研究所万建民院士团队关于赤霉素和脱落酸系统调控水稻株型分子机制的最新研究成果。该期刊同期以“APC/CTE 系统塑造水稻株型”为题对该研究进行了亮点点评。  水稻株型是与产量密切相关的重要农艺性状,受到极其复杂的分

谢旗研究组Plant Cell发现脱落酸信号通路新机制

  脱落酸(ABA)作为一种重要的植物激素,参与调控植物的生长发育、逆境响应。泛素介导的蛋白酶体降解途径,在激素的信号转到过程中起着至关重要的作用。在过去20多年的研究中ABA信号的下游已有较深入的研究,随着ABA受体的发现,ABA的上游信号通路不断被揭示。但是,ABA信号接收以后如何通过内质网将信

Cell:脱落酸信号

  脱落酸(Abscisic acid)是一种针对非生物胁迫条件产生应答的关键植物激素,同时也是植物不同发育阶段的非生物胁迫抗性机制的激活因子和调控因素。12月14日Cell杂志以“Abscisic Acid Signaling”为题探讨了ABA信号在胁迫应答,以及植物发育调控过程中如何发挥作用的。

Nature子刊等多篇研究论文解析种子表观遗传调控

  生物通报道:种子休眠与萌发是植物由生殖生长过渡到营养生长的重要发育转变进程,涉及大量基因的激活或者沉默。一些研究发现这个过程中,组蛋白修饰介导的表观遗传基因转录调控可能发挥了重要作用,但是具体分子机制尚不完全清楚。  来自中国科学院植物研究所的刘永秀研究员一直从事表观遗传和植物激素调控种子休眠和