张广平团队揭示孪晶辅助纳米晶粒生长机制

近日,中科院金属研究所沈阳材料科学国家(联合)实验室研究员张广平带领团队,通过对纳米尺度金属薄膜疲劳加载下晶粒长大行为的原子尺度研究,揭示了“孪生辅助纳米晶粒长大”的全新物理机制,相关论文在线发表于《自然—通讯》上。 尽管金属中的晶界具有阻碍位错运动、强化材料的重要作用,但当材料的晶粒尺寸减小到纳米尺度时,晶界变得不稳定。那么,纳米尺度下晶粒长大/晶界迁移是否与该尺度下的孪晶形成有关,孪晶形成在晶粒长大过程中扮演怎样的角色,这些重要的科学问题尚未澄清。 张广平等人发现,室温下的疲劳加载导致平均晶粒尺寸为19纳米到20纳米厚金薄膜中晶粒明显长大,且发生孪生的晶粒数目显著增加,大多数长大的晶粒中出现了纳米尺度多重孪晶。理论分析表明,疲劳加载下的孪晶形成可以逐渐改变纳米晶粒的局部取向,促使晶界分解为若干易迁移片段;随着疲劳周次的累积,两晶粒可通过相互纳米孪晶的形成以及晶界的不断分解,逐渐合并长大为一个晶粒。 该发......阅读全文

通过几何失配应变设计和合成纳米晶粒|Science

  与晶界相关的拓扑缺陷(GB缺陷)对纳米晶材料的电学、光学、磁性、力学和化学性质的影响是众所周知的。然而,通过实验来阐明这种影响是困难的,因为晶粒通常表现出大范围的尺寸,形状和随机的相对取向。加州大学伯克利分校A. Paul Alivisatos联合韩国首尔国立大学Taeghwan Hyeon教授

Science|通过几何失配应变设计和合成纳米晶粒

  与晶界相关的拓扑缺陷(GB缺陷)对纳米晶材料的电学、光学、磁性、力学和化学性质的影响是众所周知的。然而,通过实验来阐明这种影响是困难的,因为晶粒通常表现出大范围的尺寸,形状和随机的相对取向。加州大学伯克利分校A. Paul Alivisatos联合韩国首尔国立大学Taeghwan Hyeon教授

张广平团队揭示孪晶辅助纳米晶粒生长机制

  近日,中科院金属研究所沈阳材料科学国家(联合)实验室研究员张广平带领团队,通过对纳米尺度金属薄膜疲劳加载下晶粒长大行为的原子尺度研究,揭示了“孪生辅助纳米晶粒长大”的全新物理机制,相关论文在线发表于《自然—通讯》上。   尽管金属中的晶界具有阻碍位错运动、强化材料的重要作用,但当材料的晶粒尺寸

纳米金属机械稳定性的反常晶粒尺寸效应发现

  纳米金属的晶界在机械变形作用下容易发生晶界迁移并伴随晶粒长大,使得纳米材料发生软化,这种现象在拉伸、压缩、压痕等变形条件下均有大量实验和相关计算模拟结果的报道。  近日,中国科学院金属研究所沈阳材料科学国家研究中心卢柯院士、李秀艳研究员发现,对于塑性变形制备的纳米晶Cu、Ag、Ni样品,准静态拉

金属所发现纳米金属机械稳定性的反常晶粒尺寸效应

   近日,中国科学院金属研究所沈阳材料科学国家研究中心卢柯院士、李秀艳研究员发现纳米金属机械稳定性的反常晶粒尺寸效应。相关成果3月29日于《物理评论快报》(Physical Review Letters)在线发表。  纳米金属的晶界在机械变形作用下容易发生晶界迁移并伴随晶粒长大,使得纳米材料发生软

金属所发现纳米金属机械稳定性的反常晶粒尺寸效应

  纳米金属的晶界在机械变形作用下容易发生晶界迁移并伴随晶粒长大,使得纳米材料发生软化,这种现象在拉伸、压缩、压痕等变形条件下均有大量实验和相关计算模拟结果的报道。机械驱动晶界迁移不仅破坏材料的性能,也给利用塑性变形法制备纳米晶带来巨大困难。尽管目前对于机械驱动晶界迁移的根本机制还存在争议,但相关模

探测受压力的材料中的纳米尺寸晶粒的旋转的技术

  一项研究发现,随着超精细的材料在高压下变形,纳米尺寸的晶粒出现了旋转,这一发现对于理解结构材料的强度和寿命以及地球内部的矿物形成具有意义。尽管粗晶粒的材料的变形已经得到了广泛的研究,科研人员一直在很大程度上不能克服观测超精细材料纳米尺寸晶粒在压力下变形的实验挑战。        利用金刚石压砧径

XRD数据计算晶粒尺寸

Scherrer公式计算晶粒尺寸() Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸) 根据X射线衍射理论,在晶粒尺寸小于100nm时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer公式计算。

疲劳加载下纳米尺度金属薄膜晶粒长大机制研究获新进展

  在多晶金属中,尽管晶界具有阻碍位错运动、强化材料的重要作用,但当材料的晶粒尺寸减小到纳米尺度时,晶界将变得不稳定。主要表现为:室温下的各种机械加载(单向拉伸、疲劳、压痕加载等)能够诱发明显的晶粒长大和晶界迁移。另一方面,由于晶粒尺寸的减小,面心立方金属中不全位错运动及由此而引发的孪生行为变得更加

晶粒尺寸及形状的分析EBSD

晶粒尺寸及形状的分析传统的晶粒尺寸测量依赖于显微组织图象中晶界的观察。自从EBSD出现以来,并非所有晶界都能被常规浸蚀方法显现这一事实已变得很清楚,特别是那些被称为“特殊”的晶界,如孪晶和小角晶界。因为其复杂性,严重孪晶显微组织的晶粒尺寸测量就变得十分困难。由于晶粒主要被定义为均匀结晶学取向的单元,

一文搞定晶粒度分析!

  金属晶粒的尺寸(或晶粒度)对其在室温及高温下的机械性质有决定性的影响,晶粒尺寸的细化也被作为钢的热处理中最重要的强化途径之一。因此,在金属性能分析中,晶粒尺寸的估算显得十分重要。那么根据一张金相照片我们能从中得到哪些信息呢?一、晶粒度概述  晶粒度表示晶粒大小的尺度。金属的晶粒大小对金属的许多性

金相显微镜奥氏体晶粒度的概念

奥氏体晶粒大小是用晶粒度来度量的。可用晶粒直径、单位面积中的晶粒数等方法来表示晶粒大小。晶粒度的评定一般采用比较法,即金相试样在放大100倍的显微镜下,与标准的图谱相比。YB27-77将钢的奥氏体晶粒度分为8级,1级zui粗,8级zui细(见P208图)。0级以下为超粗晶粒,8级以上超细晶粒。奥氏体

拉曼峰变宽,晶粒是变大还是变小

拉曼峰变宽,代表原子间无序性增大,原子间距增大,与晶粒大小无直接关系。但是非要说的话,应该是变大。

金相显微镜奥氏体晶粒度的概念

奥氏体晶粒大小是用晶粒度来度量的。可用晶粒直径、单位面积中的晶粒数等方法来表示晶粒大小。晶粒度的评定一般采用比较法,即金相试样在放大100倍的显微镜下,与标准的图谱相比。YB27-77将钢的奥氏体晶粒度分为8级,1级zui粗,8级zui细(见P208图)。0级以下为超粗晶粒,8级以上超细晶粒。奥氏体

金相显微镜对于图像晶粒度的预处理

金相分析是对金属进行研究和性能测试的重要手段,在显微镜下观察,绝大多数的金属材料是由许多细小的晶粒组成。传统的材料学理论认为,晶粒细小材料的常规力学性能如拉伸强度、韧性、塑性等均相对较好;晶粒的尺寸还会影响金属的疲劳强度。因此,在金属性能分析中,晶粒尺寸(即晶粒度)的估算显得十分重要。  金属是由许

如何从XRD数据中计算出晶粒的大小

jade 计算的是全谱的粒径大小,如果你的样品做的比较好 测出来的各个峰对应的粒径大小差别不大 如果样品不太好 直接在仪器上计算出来的是最强峰对应的粒径大小 就看你想要哪个数据了

如何用imageJ求TEM图像中的晶粒尺寸分布

用imageJ求TEM图像中的晶粒尺寸分布的方法:用ImageJ打开一幅图,然后选Straight Lines,在bar上量一下,然后在菜单中的Analyze中选Set Scale,在Known Distance 填上bar所代表的长度。然后就可以量了,用Straight Lines量距离,然后按住

科学家揭示纳米材料软化和硬化行为本质

  日前,中国科学院金属研究所沈阳材料科学国家(联合)实验室卢柯研究组发现通过适当合金元素的晶界偏聚可以提高晶界稳定性,从而可以大幅度调控纳米金属的强度。该研究得到科技部国家重大科学研究计划和国家自然基金资助。该成果发表于2017年3月24日出版的Science(《科学》)。  金属材料的强度或硬度

金属所在纳米金属中发现晶界稳定性控制的硬化软化行为

  金属材料的强度或硬度往往随晶粒尺寸减小而增加,遵循基于位错塞积变形机制的Hall-Petch关系,即强度的增加与晶粒尺寸的平方根成反比。而当晶粒尺寸低于某临界晶粒尺寸(通常为10-30纳米)时,金属的强度会偏离Hall-Petch关系,有些金属的强度不再升高甚至下降,这种纳米尺度下的软化现象通常

万人计划学者发现超高稳定性金属纳米晶

  金属晶粒细化至纳米尺寸可以大幅度提高其强度和硬度,但是由于引入了大量的晶界,纳米金属材料的结构稳定性变低,晶粒长大倾向明显。在一些纳米金属,如纯铜中,纳米晶粒甚至在室温条件下即发生长大。这种固有的不稳定性一方面给纳米金属材料的制备带来困难,另一方面也限制了纳米金属的实际应用。图1 退火引起的梯度

徕卡金相显微镜对于图像晶粒度的预处理

金相分析是对金属进行研究和性能测试的重要手段,在徕卡显微镜下观察,绝大多数的金属材料是由许多细小的晶粒组成。传统的材料学理论认为,晶粒细小材料的常规力学性能如拉伸强度、韧性、塑性等均相对较好;晶粒的尺寸还会影响金属的疲劳强度。因此,在金属性能分析中,晶粒尺寸(即晶粒度)的估算显得十分重要。金属是由许

徕卡金相显微镜对于图像晶粒度的预处理

 金相分析是对金属进行研究和性能测试的重要手段,在徕卡显微镜下观察,绝大多数的金属材料是由许多细小的晶粒组成。传统的材料学理论认为,晶粒细小材料的常规力学性能如拉伸强度、韧性、塑性等均相对较好;晶粒的尺寸还会影响金属的疲劳强度。因此,在金属性能分析中,晶粒尺寸(即晶粒度)的估算显得十分重要。   金

高应变率作用下高导无氧铜晶粒细化

通过Leica EM TIC3X 对样品进行离子束切割,样品EBSD mapping解析率得到明显提升,可达80%-90%以上,并且结果稳定可重复,更好地表征了晶粒的变形,以及大小角晶界的转变。实验样品高应变率作用下高导无氧铜(OFHC)实验目的通过电子背散射衍射技术(EBSD)对在高应变率、高温和

X射线衍射分析对晶粒尺寸和点阵畸变的测定

  若多晶材料的 晶粒无畸变、足够大,理论上其粉末衍射花样的谱线应特别锋利,但在实际实验中,这种谱线无法看到。这是因为仪器因素和物理因素等的综合影响,使纯衍射谱线增宽了。纯谱线的形状和宽度由试样的平均晶粒尺寸、尺寸分布以及 晶体点阵中的主要缺陷决定,故对线形作适当分析,原则上可以得到上述影响因素的性

金属中发现超硬超高稳定性新型纳米层片结构

  对金属材料进行严重塑性变形可显著细化其微观组织,使晶粒细化至亚微米(0.1~1 微米)尺度从而大幅度提高其强度。但进一步塑性变形时晶粒不再细化,材料微观结构趋于稳态达到极限晶粒尺寸,形成三维等轴状超细晶结构,绝大多数晶界为大角晶界。出现这种极限晶粒尺寸的原因是位错增殖主导的晶粒细化与晶界迁移

金属所揭示纳米金属的本征拉伸塑性和变形机制

  最近,中科院金属研究所沈阳材料科学国家(联合)实验室卢柯研究组在提高纳米金属的塑性和韧性方面取得重要突破。他们发现,梯度纳米(GNG)金属铜既具有极高的屈服强度又具有很高的拉伸塑性变形能力。这种兼备高强度和高拉伸塑性的优异综合性能为发展高性能工程结构材料开辟了一条全新的道路。该研

粗晶,准晶,液晶,非晶,纳米晶的结构,特点

晶粒是另外一个概念,搞材料的人对这个最熟了。首先提出这个概念的是凝固理论。从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶。多个晶粒,每个晶粒的大小和形状不同,而且取向也是凌乱的,没有明显的外形,也不表现各向异性,是多晶。

晶粒尺寸对冰的“位错蠕变”影响研究获进展

  冰川与冰盖中冰的流动被认为是由位错蠕变这一变形机制所控制。位错蠕变是一种应变率与应力的n次方成正比,与晶粒尺寸无关的变形机制。以往研究认为n的经验值为3,而更多的实验室数据发现n的值应为4。n值上的差异可能是不同的实验方式或数据采集方式所致。如图1,在peak stress(小形变量)采集的力学

晶粒尺寸对冰的“位错蠕变”影响研究获进展

冰川与冰盖中冰的流动被认为是由位错蠕变这一变形机制所控制。位错蠕变是一种应变率与应力的n次方成正比,与晶粒尺寸无关的变形机制。以往研究认为n的经验值为3,而更多的实验室数据发现n的值应为4。n值上的差异可能是不同的实验方式或数据采集方式所致。如图1,在peak stress(小形变量)采集的力学数据

概述纳米氢氧化镁的性质

  纳米氢氧化镁分子式Mg(OH)2,白色微细粉,无毒、无味、无腐蚀,相对密度2.36,折射率1.561,350℃开始分解,430℃时分解迅速,490℃时全部分解,溶于强酸溶液及按盐溶液,不溶于水。  (1)光学性质  金属材料的晶粒尺寸减小至纳米级别时,颜色多变为黑色,而且粒径减小。纳米粒子的吸光