Antpedia LOGO WIKI资讯

Nature聚焦小RNA破解系统生物学大难题

最新一期的Nature Genetics在线版刊登了三篇文章,三个独立的研究团队解决了系统生物学理论中最重要的理论,三文章释放了一系列的数据解答了系统生物学细胞定向分化的关键调控网络。同期Nature配发了评论文章,FANTOM studies networks in cells。 系统生物学研究的最终目的在于解决细胞定向分化的路径,实现这一目标不仅有助人类深入了解整体发育,更有利于人们探索干细胞治疗领域(要实现干细胞治疗目的,首先要掌握干细胞定向分化理论知识和技术)。 这三个独立的研究实验室都属于FANTOM项目的实验室,FANTOM项目旨在深入研究人类基因调控网络。目前全球有100多个实验室参加了这一项目,该项目主要利用RNA测序技术将RNA序列数据与DNA序列数据相比较,鉴定基因转录的起始位点。 本期Nature Genetics上的三篇文章的发布者都属于FANTOM项目实验室,第一个研究小组鉴定出一......阅读全文

Nature破解RNA控制代码

  来自加拿大多伦多大学的研究人员在新研究中破解了一个“RNA控制代码”,这一代码支配了RNA传递DNA遗传信息,生成蛋白质的方式。   多伦多大学Donnelly细胞和生物分子研究中心教授Quaid Morris说:“第一次,我们了解了对于基因加工至关重要的一个代码的语言含义。许多的人

Nature揭秘RNA降解机制

  就好像我们利用碎纸机来销毁不再有用或包含有潜在破坏性信息的文件一样,细胞利用一些分子机器来降解不必要或有缺陷的大分子。来自马克斯普朗克生物化学研究所(MPIB)的科学家们,现在揭示出了细胞核区室利用一种特异的RNA外来体(exosome)的机制——这一大分子机器负责了核糖核酸(RNAs)的降解和

Nature揭秘RNA“碎纸机”

  就像我们用碎纸机破坏掉不再有用或是包含潜在破坏性信息的文件一样,细胞利用分子机器来降解不必要的或是有缺陷的大分子。德国马克思普朗克生物化学研究所的科学家们现在破解了负责真核生物中核糖核酸(RNAs)降解的大分子机器――外来体(exosome)的结构和运作机制。   RNAs是一类广泛大量存在于

Nature:跨越鸿沟的RNA结构信号

  科罗拉多大学的研究人员在Nature杂志上发表文章指出,一个以RNA结构为基础的信号,能够跨越不同生命类型数十亿年的进化趋异。这一发现改变了人们对生命(细菌和真核生物)起始蛋白质合成的基础认识。   长期以来,科学家们一直认为细菌和真核生物中的翻译起始信号是相互排斥的,这篇文章的通讯作者

Nature:跨越鸿沟的RNA结构信号

  科罗拉多大学的研究人员在Nature杂志上发表文章指出,一个以RNA结构为基础的信号,能够跨越不同生命类型数十亿年的进化趋异。这一发现改变了人们对生命(细菌和真核生物)起始蛋白质合成的基础认识。   长期以来,科学家们一直认为细菌和真核生物中的翻译起始信号是相互排斥的

Nature解析癌症与非编码RNA

  人类基因组可生成1万多种长链非编码RNA(lncRNA) 分子,但人们至今却只知道其中几十种转录物的功能。在发表在8月14日《自然》(Nature)杂志上的一篇新研究中,来自加州大学的杨柳青(Liuqing Yang,音译)等研究人员揭示,两种lncRNAs结合并控制了雄激素受体的功能。

Nature Methods发布新RNA测序技术

  Santa Cruz公司和Rochester大学的研究人员开发了一种新的RNA测序技术。他们通过这一技术发现了许多此前未被检测到的调控性小RNA。这一成果发表在八月三日的Nature Methods杂志上。  这个新技术可以在细胞中灵敏检测到带有化学修饰(甲基化)的小RNA。“tRNA是生物体内

Nature惊人发现:可编码的“垃圾”RNA

  在植物和动物中,microRNAs(miRNAs)调控了许多不同基因的表达。这样的调控在许多过程包括经历不同发育阶段的转变以及对环境压力的响应中都起着关键的作用。miRNAs是由酶切割前体转录物初级miRNAs (pri-miRs)而生成,直到现在人们都认为pri-miRs不编码任何的蛋白质。 

Nature新文章解析小RNA调控机制

  来自波士顿儿童医院和哈佛大学医学院的研究人员,在新研究中揭示了在Lin28介导的let-7选择性调控中起关键作用的一种核酸酶,相关论文“A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28–let-7 pathwa

Nature子刊:增强RNA干涉的效力

  人们可以通过纳米颗粒将短链RNA运输到目标细胞,关闭功能发生异常的基因,从而治疗癌症和其他疾病。不过迄今为止,科学家们还不完全了解,纳米颗粒进入细胞后发生的情况。   现在,麻省理工MIT的一项新研究展现了这些纳米颗粒的命运,这一发现能帮助人们大大提高siRNA的运输效率。文章于六月二十三日发