基因芯片实验操作流程图

芯片实验操作流程包括样本DNA或RNA制备、标记、杂交及洗涤等步骤基因芯片实验操作流程图 1.样本DNA或RNA制备 芯片实验中核酸的抽提没有特殊之处,参照常规的分子生物学实验手册就可以。但对于RNA样本,由于RNA的稳定性很差,在活体内的半衰期也很短,因此取材一定要新鲜,取材后迅速保存在液氮中,在整个处理过程中要非常小心,以免降解,影响实验成功率或结果的可靠性。 2.核酸标记方式 分子生物学常用的标记方法有同位素标记和非同位素标记方法,常用的同位素有33P、32P、125I及3H等化学发光标记和荧光标记,非同位素标记方法又分为化学发光法和荧光法。常用的化学发光物质有碱性磷酸酶和辣根过氧化物酶,它们能催化相应的底物产生有颜色的沉淀物;生物素......阅读全文

基因芯片实验操作流程图

   芯片实验操作流程包括样本DNA或RNA制备、标记、杂交及洗涤等步骤基因芯片实验操作流程图     1.样本DNA或RNA制备    芯片实验中核酸的抽提没有特殊之处,参照常规的分子生物学实验手册就可以。但对于RNA样本,由于RNA的稳定性很差,在活体内的半衰期也很短,因此取材一定要新鲜,取材后

表达谱基因芯片实验操作流程

一、试剂1. TRIzol2. 异丙醇3. 氯仿4. 75%乙醇(RNase-free)5. Milli-Q水(RNase-free)6. 无水乙醇7. dNTPs8. Cy5-dCTP和Cy3-dCTP9. 杂交试剂110. 标记试剂I11. 杂交试剂212. 标记试剂II13. 反转录酶14. 

表达谱基因芯片实验

表达谱基因芯片可应用于:(1)疾病诊断;(2)新药开发;(3)环境保护。实验方法原理按照预定位置固定在固相载体上很小面积内的千万个核酸分子所组成的微点阵阵列。在一定条件下,载体上的核酸分子可以与来自样品的序列互补的核酸片段杂交。如果把样品中的核酸片段进行标记,在专用的芯片阅读仪上就可以检测到杂交信号

基因芯片实验的步骤

(1)样品制备和标记  为了获得目的基因的杂交信号必须对目的基因进行标记,由于目前常用的荧光检测系统的灵敏度还不够高,为了提高检测灵敏度,需要在对样品核酸进行荧光标记时,对目的基因进行扩增。生物样品成分复杂,往往含有较多的抑制物,在对样品进行扩增、荧光标记之前,必须先提取、纯化样品核酸。目前普遍采用

基因芯片实验原理与方法

本实验的目的是学会cDNA芯片的使用方法。了解各种基因芯片的基本原理和优缺点。基因芯片这一技术方法在1991年的Science杂志上被首次提出,其高通量、并行检测的特点适应了分析人类基因组计划所提供的海量的基因序列信息的需要,可以说,人类基因组计划是基因芯片技术发展的原因,而对深人研究基因突变和基因

基因芯片技术的标准操作规程

  基因芯片的制备 以玻璃片或硅片为载体,采用原位合成和微矩阵的方法将寡核苷酸片段或cDNA作为探针按顺序排列在载体上。  荧光标记 在基因组DNA扩增过程中,将带有Cy3或Cy5荧光素的dUTP或dCTP加入到新合成的DNA链,使新合成的DNA链带有荧光标识。  杂交和洗涤 使带有荧光标记gDNA

基因芯片的必备知识和操作流程

基因芯片  技术的诞生为生物技术工作人员打开了一道科研的便利之门,曾被评为1998年年度十大科技进展之一。本文对基因芯片的实验原理、技术基础、分类、用途、操作主要环节等内容做详细的介绍。 1.基本原理和技术基础 基因芯片以DNA杂交  为基本原理,基于A和T、G和C的互补关系。它是在探针

基因芯片的必备知识和操作流程

  基因芯片 技术的诞生为生物技术工作人员打开了一道科研的便利之门,曾被评为1998年年度十大科技进展之一。本文对基因芯片的实验原理、技术基础、分类、用途、操作主要环节等内容做详细的介绍。  1.基本原理和技术基础  基因芯片以DNA杂交 为基本原理,基于A和T、G和C的互补关系。它是在探针的基础上

急救流程图

一位女医生给女儿画的急救流程图几年前,我一个朋友的儿子猝死在家中,她问我:“如果我会做心肺复苏,他是不是还能活着?”我不知道该说什么好。1年前,我在美国,打开房东家的橱柜门,就能看见一张心肺复苏图。而在中国,大多数人缺乏最基本的急救知识。生活在这个压力倍增的社会,加上生活方式的改变,猝死的发生越来越

基因芯片技术的应用实验研究

包括基因表达检测、寻找新基因、杂交测序、基因突变和多态性分析以及基因文库作图以及等方面。1、基因表达检测。人类基因组编码大约10万个不同的基因,仅掌握基因序列信息资料,要理解其基因功能是远远不够的,因此,具有监测大量mRNA(信使RNA,可简单理解为基因表达的中介物)的实验工具很重要。有关对芯片技术

基因芯片实验原理与方法(一)

一、目的本实验的目的是学会cDNA芯片的使用方法。了解各种基因芯片的基本原理和优缺点。基因芯片这一技术方法在1991年的Science杂志上被首次提出,其高通量、并行检测的特点适应了分析人类基因组计划所提供的海量的基因序列信息的需要,可以说,人类基因组计划是基因芯片技术发展的原因,而对深人研究基因突

HIV初筛实验室工作流程图

HIV初筛实验室工作流程图HIV初筛实验室工作流程图

基因芯片

基因芯片(genechip)(又称DNA芯片、生物芯片)的原型是80年代中期提出的。基因芯片的测序原理是杂交测序方法,即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法,在一块基片表面固定了序列已知的靶核苷酸的探针。当溶液中带有荧光标记的核酸序列TATGCAATCTAG,与基因芯片上对应位置的

实验室检验检测工具​基因芯片

基因芯片(genechip)(又称DNA芯片、生物芯片)的原型是80年代中期提出的。基因芯片的测序原理是杂交测序方法,即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法,在一块基片表面固定了序列已知的靶核苷酸的探针。当溶液中带有荧光标记的核酸序列TATGCAATCTAG,与基因芯片上对应位置的

sbr工艺流程图

1、进水阶段:指从向反应器开始进水至到达反应器最大容积时的一段时间。2、反应阶段:是SBR员主要的阶段,污染物在此阶段通过微生物的降解作用得以去除。3、沉淀阶段:沉淀的目的是固液分离,相当于传统活性污泥法的二次沉淀他的功能。4、排水阶段:目的是从反应器中排陈污泥的澄清液,一直恢复到循环开始时的最低水

尿液常规检查流程图

尿液常规检查流程图  

尿液常规检查流程图

尿液常规检查流程图

sbr工艺流程图

1、进水阶段:指从向反应器开始进水至到达反应器最大容积时的一段时间。2、反应阶段:是SBR员主要的阶段,污染物在此阶段通过微生物的降解作用得以去除。3、沉淀阶段:沉淀的目的是固液分离,相当于传统活性污泥法的二次沉淀他的功能。4、排水阶段:目的是从反应器中排陈污泥的澄清液,一直恢复到循环开始时的最低水

基因芯片-简介

随着人类基因组(测序)计划( Human genome project )的逐步实施以及分子生物学相关学科的迅猛发展,越来越多的动植物、微生物基因组序列得以测定,基因序列数据正在以前所未有的速度迅速增长。然而 , 怎样去研究如此众多基因在生命过程中所担负的功能就成了全世界生命科学工作者共

基因芯片简介

随着人类基因组(测序)计划(Human genome project)的逐步实施以及分子生物学相关学科的迅猛发展,越来越多的动植物、微生物基因组序列得以测定,基因序列数据正在以前所未有的速度迅速增长。然而,怎样去研究如此众多基因在生命过程中所担负的功能就成了全世界生命科学工作者共同的课题。为此,建立

基因芯片概念

基因芯片(又称 DNA 芯片、生物芯片)技术就是顺应这一科学发展要求的产物,它的出现为解决此类问题提供了光辉的前景。该技术系指将大量(通常每平方厘米点阵密度高于 400 )探针分子固定于支持物上后与标记的样品分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息。通俗地说,

基因芯片-原理

基因芯片(gene chip)的原型是80年代中期提出的。基因芯片的测序原理是杂交测序方法,即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法,可以基因芯片的测序原理用图11-5-1来说明。在一块基片表面固定了序列已知的八核苷酸的探针。当溶液中带有荧光标记的核酸序列TATGCAATCTAG,与

微生物检测—流程图

微生物检测-流程图 

制粒工艺的流程图

湿法制粒:在药物粉末中加入液体粘合剂,靠粘合剂的架桥或粘结作用使粉末聚结在一起而制备颗粒的方法。产物外形美观、流动性好、耐磨性较强、压缩成形性好。原辅料一粉碎一混合一制软材一制粒一干燥一整粒一压片干法制粒法是将药物和辅料的粉末混合均匀、压缩成大片状或板状后,粉碎成所需大小颗粒的方法。用于热敏性物料、

纯碱压煮法工艺流程图

与硫酸法类似,压煮法处理锂矿石也需要预先对锂矿石进行转型或脱氟焙烧,再将焙烧矿与一定量的Na2CO3混合均匀,在200℃和加压条件下(0.2~2MPa)处理,利用Na置换出Li;然后往水浸料浆中通入CO2,使碳酸锂转化为溶解度较大的LiHCO3;分离残渣后加热溶液,析出碳酸锂产品。纯碱压煮法工艺流程

微生物检测——流程图图解

微生物检测-流程图 

基因芯片相关技术

样品的准备及杂交检测目前,由于灵敏度所限,多数方法需要在标记和分析前对样品进行适当程序的扩增,不过也有不少人试图绕过这一问题,如 Mosaic Technologies 公司引入的固相 PCR 方法,引物特异性强,无交叉污染并且省去了液相处理的烦琐; Lynx Therapeutics 公司引入

什么是基因芯片?

基因芯片(genechip)(又称DNA芯片、生物芯片)的原型是80年代中期提出的。基因芯片的测序原理是杂交测序方法,即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法,在一块基片表面固定了序列已知的靶核苷酸的探针。当溶液中带有荧光标记的核酸序列TATGCAATCTAG,与基因芯片上对应位置的

基因芯片主要类型

目前已有多种方法可以将寡核苷酸或短肽固定到固相支持物上。这些方法总体上有两种,即原位合成( in situ synthesis )与合成点样两种。支持物有多种如玻璃片、硅片、聚丙烯膜、硝酸纤维素膜、尼龙膜等,但需经特殊处理。作原位合成的支持物在聚合反应前要先使其表面衍生出羟基或氨基(视所要固定基因芯