Antpedia LOGO WIKI资讯

我们为什么要进行蛋白质研究?

蛋白质作为生命活动的直接执行者,参与生命的几乎所有过程,如遗传、发育、繁殖、物质和能量的代谢、应激等等。揭示生物体内成千上万种蛋白质的具体功能机制等是蛋白质研究的核心内容,也是后基因组时代生命科学研究极富挑战的领域之一。蛋白研究贯穿科学研究的各个领域,至关重要,并且存在巨大的研究空间。以转化医学的诊断和生物治疗为例:在诊断领域,通过检测血清中AFP、CEA、GP73、HE4的含量可以较早地预测各种癌症的出现,目前已经商业化用于诊断的蛋白指标仅有数十种,与已经研究定义的蛋白数量一万七千余种来说只是冰山一角。随着蛋白质组学技术日新月异的积累,通过大量病人和正常人的体液样本研究,特别是针对具有不同年龄段、不同疾病、不同病程的病人体液样本的研究将会产生越来越有价值的诊断检测蛋白标志物,这些指标的发现大大提高了肿瘤的早期发现率。在生物治疗领域,基于PD-1和PD-L1的人源化抗体和基于CD19、CD20、CD138等的白血病CarT细胞疗......阅读全文

质谱检测法如何进行蛋白质分析?

  MS/MS操作模式  串联质谱仪通常使用的都是离子模式来鉴定蛋白质的氨基酸序列。目前所有的MS/MS质谱仪都具有该功能。不过其它特殊的质谱仪也具有MS/MS功能。如果要发现蛋白质中的某个功能基团则需要用到母离子扫描功能或者中性丢失扫描功能,而这就必须用到三重四级杆质谱仪,如Q-Q-Q质谱仪,或四

质谱仪

最近又有几项有关质谱仪的最新进展问世,这些新成果的出现又给我们的生物大分子研究工作补充了“弹药”。在蛋白质测序方面,基于碰撞诱导裂解技术(CID),又新出现了可变裂解技术(Alternate fragmentation technique),该新技术是基于处在碰撞池中的离子具有的电子传递特性开发出来

质谱检测法与蛋白质分析(二)

传统的和最新的蛋白质组学研究策略虽然到目前为止,还没有一种蛋白质组学研究策略能够对某个蛋白质组进行常规的、完整的分析,但是现在的技术已经非常强大,我们相信,很快就能进行全蛋白质组学研究了。而且,对某个亚蛋白质组(比如某个细胞器或亚细胞结构的蛋白质组)进行研究早就已经不是什么难题了,这已经成为了一种常

蛋白质(十五)主要研究

主要研究历史在18世纪,安东尼奥·弗朗索瓦(Antoine Fourcroy)和其他一些研究者发现蛋白质是一类独特的生物分子,他们发现用酸处理一些分子能够使其凝结或絮凝。当时他们注意到的例子有来自蛋清、血液、血清白蛋白、纤维素和小麦面筋里的蛋白质。荷兰化学家格利特·马尔德(Gerhardus Joh

蛋白质组,蛋白质组学及研究技术路线

基因组(genome)包含的遗传信息经转录产生mRNA,一个细胞在特定生理或病理状态下表达的所有种类的mRNA称为转录子组(transcriptome)。很显然,不同细胞在不同生理或病理状态下转录子组包含的mRNA的种类不尽相同。mRNA经翻译产生蛋白质,一个细胞在特定生理或病理状态下表达的所有种类

蛋白质组学概念的起源和发展

  蛋白质组学的诞生和发展,离不开多学科和技术的逐渐交叉融合。这些学科技术包括(但不限于)基因组学、生物化学、分析化学、自动化、基于电磁场的精密质谱仪、信号处理、数理统计和计算机科学。近年来,分子医学、大数据技术和人工智能的发展,进一步加速推动了蛋白质组学的成长,使之在精准医疗领域展示出越来越大的应

赛默飞世尔科技“蛋白质组学解决方案”网络视频讲座

  3月30日下午,赛默飞世尔科技蛋白质组学市场专员唐佳向大家作了题为《蛋白质组学研究方法和Thermo蛋白质组学解决方案》的报告

质谱检测法与蛋白质分析(三)

  Protein(s):待测蛋白质样品;Enz. Digestion:酶解;Pep. Mixture:裂解产物混合物;   MS Analysis:质谱检测分析;DB Search:数据库比对搜索;Identities:鉴定;   Prot.DB :蛋白质数据库;Proteom

一文了解蛋白质组学分析技术

  蛋白质组学(英语:proteomics,又译作蛋白质体学),是以蛋白质组为研究对象,研究细胞、组织或生物体蛋白质组成及其变化规律的科学。这个概念最早是在1994年,由Marc Wikins首先提出的新名词。  蛋白质组(Proteome)一词,源于蛋白质(protein)与 基因组(genome

蛋白质组,蛋白质组学及研究技术路线

基因组(genome)包含的遗传信息经转录产生mRNA,一个细胞在特定生理或病理状态下表达的所有种类的mRNA称为转录子组(transcriptome)。很显然,不同细胞在不同生理或病理状态下转录子组包含的mRNA的种类不尽相同。mRNA经翻译产生蛋白质,一个细胞在特定生理或病理状态下表达的所有种类

质谱检测法与蛋白质分析(二)

  离子回旋加速器与轨道离子阱质谱仪   随着功能强大的带有外部离子源的傅里叶变换-离子回旋加速器(FT-ICR)质谱仪的出现以及商业化,我们在质谱仪的分辨率与准确性方面取得了质的飞跃。有了这种新型的质谱仪,我们现在可以对ppm级乃至亚ppm级的样品进行分析了。该质谱仪的高分辨率特性不

质谱检测法如何进行蛋白质分析?

  串联质谱仪通常使用的都是离子模式来鉴定蛋白质的氨基酸序列。目前所有的MS/MS质谱仪都具有该功能。不过其它特殊的质谱仪也具有MS/MS功能。如果要发现蛋白质中的某个功能基团则需要用到母离子扫描功能或者中性丢失扫描功能,而这就必须用到三重四级杆质谱仪,如Q-Q-Q质谱仪,或四级杆离子阱质

蛋白质组学在植物科学研究中的应用

1 植物群体遗传蛋白质组学 1.l 遗传多样性蛋白质研究基于基因组学的一些遗传标记,如RAPD(Random Amplified Polymorphic DNA)、RFLP(Restriction Fragment Length Polymorphism)、SSR(Simple Sequen

蛋白质组与蛋白质芯片研究现状及应用

摘要: 蛋白质组研究目的在于从蛋白水平阐明基因的功能,这对于探索生命的奥秘具有重要的意义。蛋白质芯片是近年来兴起的一种强有力的高通量研究方法, 能够一次平行分析成千上万的蛋白样品, 具有很高的敏感度与准确性。它将成为蛋白质组学研究中的强有力的研究方法, 并最终架起基因组学与蛋白质组学的桥梁。1  研

中科院院士张玉奎:计量是做好蛋白质定量研究的关键

  在日前召开的“2016蛋白和肽类药物及诊断试剂研发与质控”国际研讨会上,中国科学院院士、中国科学院大连化学物理研究所研究员张玉奎在接受记者采访时表示,“蛋白质定量研究的准确性,要靠计量说了算”。  蛋白质是人类生命活动的功能执行体,一切生命活动都有赖于蛋白质功能的正确发挥。对蛋白质进行深入系统的

北大蛋白质科学中心:交叉视角下的蛋白质研究

在过去的半个世纪里,科学家对于作为生命活动直接执行者的蛋白质的认识已经取得了飞跃性的进展,蛋白质的“神秘面纱”被一点一点揭开。而这一切无不得益于针对蛋白质展开的跨学科研究。没人能够预料,跨学科研究所带来的思想碰撞还会产生怎样的结果。 作为国内蛋白质研究领域的重要力量之一,北京大学的科学家们

酵母双杂交技术及其在蛋白质组研究中的应用

     作为后基因组时代出现的新兴研究领域之一, 蛋白质组学(proteomics)正受到越来越多的关注。 蛋白质组学的研究目标是对机体或细胞的所有蛋白质进行鉴定和结构功能分析。 蛋白质组学的研究不局限任何特定的方法。 高分辨率的蛋白质分离技术如二维凝胶电泳和高效液相

贺福初:中国蛋白质组学面临的机遇和挑战

  蛋白质组学是一门新兴但发展迅速的学科。近年来,国际上主要发达国家和地区纷纷加大了对蛋白质组学的支持力度,这一研究领域也由此成为各强国科技角力的新战场。10月12~13日,以“蛋白质组学:前沿与挑战”为主题的第381次香山科学会议在北京举行,与会的59名海内外科学家围绕蛋白质组学发

酵母双杂交技术及其在蛋白质组研究中的应用

作为后基因组时代出现的新兴研究领域之一, 蛋白质组学(proteomics)正受到越来越多的关注。 蛋白质组学的研究目标是对机体或细胞的所有蛋白质进行鉴定和结构功能分析。 蛋白质组学的研究不局限任何特定的方法。 高分辨率的蛋白质分离技术如二维凝胶电泳和高效液相层析, 经典的蛋白质鉴定方法如氨

活体生物发光成像技术的最新进展

活体动物体内光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进

蛋白质相互作用研究:从整体到局部

随着越来越多的物种基因组测序完成,对全蛋白质组与相互作用组的解释已经成为近期研究的热点。虽然蛋白质组研究阐述了表达蛋白质的所有组成成分,但是相互作用组包括了生物体内存在或者可能存在的成对蛋白质-蛋白质相互作用,因此,形成了庞大且稀疏的网状结构。伦敦帝国理工学院生物信息学中心的WP Ke

酵母双杂交技术及其在蛋白质组研究中的应用

摘要  蛋白质组学是在后基因组时代出现的一个新兴的研究领域, 它的主要任务是识别鉴定细胞、组织或机体的全部蛋白质, 并分析蛋白质的功能及其模式。 因此, 揭示蛋白质组中蛋白质间的相互作用关系也是蛋白质组学的重要内容之一。 酵母双杂交技术是用来检测蛋白质间是否相互作用的一

访973蛋白质组项目组:打开生命的“万花筒”

——访“人类重大疾病的蛋白质组学研究”项目组     如果在六七年前提到蛋白质组学,恐怕知之者甚少。但是,2001年《科学》杂志已把蛋白质组学列为六大研究热点之一,其“热度”仅次于干细胞研究,名列第二。如今蛋白质组学的受关注程度已令人刮目相看。  

蛋白质组技术的研究进展

  大规模基因组测序计划的实施已改变生命科学的重心,在相当短的时期内,一些原核生物和某些低等真核生物的基因组序列已被测定. 1995年,流感嗜血杆菌基因组序列首次被破译,在此后不到两年的时间,近50个细菌的基因组序列已被完成. 然而,这仅仅是理解有机物功能的一个起点. 在基因组时代,许多DNA序列信

蛋白质组学在高端心血管研究中的应用

Dr Manuel Mayr,King’s College London and Dr Paul Humphrey,Thermo Fisher Scientific本文将讨论伦敦国王学院采用的蛋白质组学解决方案在先进的心血管研究中的重要性。引言蛋白质组学是对蛋白质的大范围分析,被认为是生物系统研究的

蛋白质组学解决方案在高端心血管研究中的应用

Dr Manuel Mayr,King’s College London and Dr Paul Humphrey,Thermo Fisher Scientific 本文将讨论伦敦国王学院采用的蛋白质组学解决方案在先进的心血管研究中的重要性。 引言 蛋白质组学是对蛋白质的大范围分析,被认为是生

破译蛋白质组 打开生命“解剖图”

 据新一期英国《自然》杂志报道,人类蛋白质组组织前主席约翰·伯杰龙发起一项大规模的破译人类蛋白质组计划,目标是花费约10年时间将人体所有蛋白质归类并描绘出它们的特性,并揭示它们在细胞中所处的位置以及每种蛋白质与其他哪些蛋白质存在相互作用。 早在上世纪90年代,科学家就已经启动了基因组计划

生物医学光学技术

  摘 要:随着生物分子光学标记技术的不断进步,光学技术在揭示生命活动基本规律的研究中正发挥越来越重要的作用,也为医学诊断与治疗提供了更多、更有效的手段。本报告首先简要介绍光学技术在生物医学应用中的发展概况,然后从基因表达及蛋白质—蛋白质相互作用研究方面,讨论生物分子光学技术的特点与优势,阐明基于分

生物医学光学技术

  摘 要:随着生物分子光学标记技术的不断进步,光学技术在揭示生命活动基本规律的研究中正发挥越来越重要的作用,也为医学诊断与治疗提供了更多、更有效的手段。本报告首先简要介绍光学技术在生物医学应用中的发展概况,然后从基因表达及蛋白质—蛋白质相互作用研究方面,讨论生物分子光学技术的特点与优势,阐明基于分

蛋白质浓缩和溶质的去除实验

预计在新奇的一级分子和生物仿制药实体方面将会有突出的增长。一些进步的是改良的分析、开发和相互作用。现在已有许多用于去除關的方法,包括冻干、反向萃取、溶质析出,precipitation、透析(溶剂交换) 、超滤和层析技术。值得注意的是,在众多微和设备发展的支持下,小型化和高通量的蛋白质分析取得了极大