发布时间:2019-04-23 16:40 原文链接: MicroRNAExpressionProfilingbyBeadArray4

Bead-array-based microRNA detection technology, including the bio-statistic analysis, is currently not well established or widely used and we have applied a commercial PCR-based assay to confirm the array data for some microRNAs that cover different expression levels and change factors. In contrast to mRNA profiling, where RT-PCR-based assays are considered as gold standard for data validation, new generation deep sequencing is considered as the method of choice for microRNA quantification but is not available in our research institute. For the microRNAs let-7 a/b, miR-19 a/b, and miR-203, the PCR-based quantification method (Fig. 2b) confirmed the direction of change found with microarray technology (Table 2a). Expression of miR-130b and miR-455 was at similar levels in both assays. The correlation calculated for the eight tested microRNAs was acceptable: multiple r² from f test of mean relative cycling times (ΔCT) to mean log2 microarray expression values was 0.9279. Differences of absolute levels between the microRNA targets probably results from different hybridization properties of the microarray probes and variation in the performance of Taqman primers for the specific microRNA on the other side.

Assuming that any IFNα relevant microRNA will have the same kinetics as the mRNA for PRGs, we looked at the regulation of microRNA genes in our experiment. These IRmiRs should respond to IFNα stimulation preferentially in both cell lines, because this would be a good indication of a general mechanism in the IFNα response. Within the 25 most significantly regulated genes (Table 2b), only one gene (HS_250) is downregulated. A general upregulation of transcripts is consistent with classic IFNα signaling seen for mRNAs. However, the maximal observed change factor with high significance was 1.84 (miR-33b in Table 2b) which is clearly lower than the values seen for protein coding mRNAs (2). We also included an expression analysis 24 h after IFNα stimulation in order to detect microRNA genes that show either delayed induction or remain activated at comparable levels to the 4 h stimulus. Based on our data set, the majority of the microRNA response genes show no further induction, but rather moderate downregulation 24 h after induction. This finding is not surprising as we expected immediate early impact of IFNα-mediated primary signaling.

We also measured the IFNα response in the same experiment and for the same microRNAs (Table 2c). When we analyze the IFNα effect at the early time point in both cell lines we find all the validated microRNAs to be upregulated (Fig. 3a). The magnitude of upregulation and the basal expression levels of the microRNA-19a and 19b are similar in both cell lines (Fig. 3b, top). This and the finding that miR-19 regulates SOCS1 (4) may be relevant for the regulation of cytokine signaling. let-7a and let-7b had higher levels in the melanoma-cell-line-derived samples compared HuH7, but the induction by IFNα in ME-15 could not be reproduced by RT-PCR (Fig. 3b, bottom). In both assays accurate fold changes are difficult to calculate, if the baseline expression level is close to background noise or the detection limit. An example of a gene at the detection limit is miR-203, which is not detectable without IFNα treatment in HuH7 cells (Table 2c). Upon IFNα stimulation (24 h in HuH7) the microRNA is detectable above background suggesting minimal induction. Consequently a solid change factor cannot be calculated, which is consistent with the high variance obtained by qPCR (ME-15). This result is in fact not surprising, because both technologies rely on logarithmic PCR amplification of microRNA templates. At low expression levels, both technologies show relatively high variation in biological replicates, which should be considered for data interpretation. Interestingly, miR-203 has a putative binding site for ISGF3 in the promoter region, which would enable IFNα-dependent upregulation. miR-30 has been reported to be IFNβ inducible, although the subclass measured was not specified by the authors (9). We decided to analyze the most promising candidate (miR-30e-5p) present in our microarray dataset (Fig. 3a in gray). Detection of miR-30e failed in ME-15 cells due to technical problems, but induction in HuH7 was similar to miR-19a/b.

MediaObjects/12575_2009_9012_Fig3_HTML.gif

Fig. 3 IFNα-dependent modulation of microRNA expression. a Volcano plot display of IFNα induced microRNA upregulation 4 h after induction. The change factor values (2^log factor change −1) are plotted on the X-axis against the p value in logarithmic scale on the Y-axis. Top-rated microRNAs are annotated together with the let-7 family members. b Confirmation of IFNα effect for selected microarray data by qPCR. The CT-values are the average of three technical and three biological replicates and changes were calculated with 2^ΔMNE (mean normalized expression values). Error bars show 2^ΔMNE ± Δx (average standard error of treated and untreated MNE) from biological triplicates. miR-30e failed to amplify in ME-15 and miR-203 was below the detection limit in HuH7. Expression values were normalized against endogenous snoRNA RNU48 levels.


Some technology-related questions remain open. The microRNA assay measures essentially the number of amplicons generated by RT-PCR for each transcript. Thus the signal is an indirect measurement of transcript abundance as compared to classical mRNA microarray platforms, where the target mRNA is directly labeled during linear amplification by in vitro transcription. As a consequence, change factor calculations for amplicon-based assays are ambiguous.

In summary, Illumina’s bead array technology is well suited for multi-parallel profiling of microRNAs expressed in different cell types or tissues. We were also able to detect IFNα-inducible microRNA genes although the changes observed were moderate and biological significance remains to be proven. Like most microarray-based detection technologies the technical variability among identical samples is low compared to biological variations of individual cell cultures. At this point it is important to note that variation among biological samples occurs and is independent of the parameters that are measured. Consistent with IFNα-dependent induction of mRNAs we find that virtually all modulated microRNA genes are upregulated. However, the IFNα-induced changes detected in our study are relatively small compared to the changes induced by IFNβ in HuH7 cells (9). Finally, it is noteworthy that IRmiRs have similar kinetic properties to their mRNA counterparts. miR-10b for instance is induced early in ME-15 and remains upregulated, while miR-19 abundance ceases after 24 h. In general, the majority of IRmiR genes were reset to basal levels after 24 h and further studies are needed for kinetic classification. Thus, our study adds another level of complexity to the dynamic regulation IFNα signaling and other mechanisms like epigenetic promoter methylation are currently under intense investigation in our laboratories.

Acknowledgements  We thank Dr. Guido Steiner and Andreas Buness (F. Hoffmann-La Roche Ltd.) for their support in bioinformatics and statistics, Dr. Martin Ebeling (F. Hoffmann-La Roche Ltd.) for the comparative genomic evaluation of microRNA-targeted transcripts and Prof. Dr. Giulio Spagnoli (University Hospital Basel) for the gift of the ME-15 melanoma cell line. Finally, we are grateful to Heather Hinton (F. Hoffmann-La Roche Ltd.) for critical reading of the manuscript and to Dr. Laura Suter-Dick (F. Hoffmann-La Roche Ltd.) for sharing lab space and introduction into GCP sampling.


相关文章

小核酸药物:MicroRNA216a在心脏血管生成中的作用

血管生成,即从原有血管形成新的血管,是心肌对缺血损伤或持续增加的血流动力学需求条件的重要适应机制。虽然病理性心脏重塑的特征是血管形成功能障碍、供氧不足、随后的心肌细胞(CM)丢失和退化、萎缩和间质纤维......

JACS:一对发夹DNA与癌细胞中的microRNA结合……

在一项新的研究中,来自日本东京大学的研究人员以一种全新的方式使用人工DNA来靶向和杀死癌细胞。该方法在实验室测试中对人类宫颈癌衍生细胞和乳腺癌衍生细胞以及小鼠的恶性黑色素瘤细胞有效。相关研究结果于20......

Anal.Chem.封面|微珠阵列芯片用于单细胞microRNA定量检测

 英文原题:ACascadedDNACircuitinBeadArraysforQuantitativeSingle-CellMicroRNAAnalysis 近日,南京大学化学化......

线粒体microRNA成像研究获进展

近日,国家纳米科学中心研究员李乐乐课题组在线粒体microRNA成像研究中取得重要进展。相关研究成果以SpatiallySelectiveImagingofMitochondrialMicroRNAs......

线粒体microRNA成像研究取得重要进展

近日,国家纳米科学中心研究员李乐乐课题组在线粒体microRNA成像研究中取得重要进展。相关研究成果以SpatiallySelectiveImagingofMitochondrialMicroRNAs......

microRNA生成过程中的重要分子机制

生命活动的中心法则是由遗传物质DNA转录生成信使RNA,再由信使RNA翻译成蛋白质,从而完成新陈代谢、生长发育等各项生理功能。然而,细胞(尤其是高等生物细胞)内还存在着大量不翻译成蛋白质的RNA,被称......

生物物理所等揭示microRNA生成过程中的重要分子机制

生命活动的中心法则是由遗传物质DNA转录生成信使RNA,再由信使RNA翻译成蛋白质,从而完成新陈代谢、生长发育等各项生理功能。然而,细胞(尤其是高等生物细胞)内还存在着大量不翻译成蛋白质的RNA,被称......

我国学者利用microRNA表达信息实现ER+乳腺癌早期诊断

近日,国家纳米科学中心孙佳姝课题组在肿瘤外泌体microRNA高灵敏检测方面取得新进展。相关研究成果“ThermophoreticDetectionofExosomalmicroRNAsbyNanof......

研究揭示microRNA抑制mRNA表达新机制

为了让基因中包含的指令最终在体内发挥某些功能,构成基因DNA序列的核苷酸或者说碱基必须被读取并用于产生信使RNA(mRNA)。所产生的mRNA随后必须翻译成功能性的蛋白。细胞内的许多不同途径会影响这一......

microRNA分子或能将机体免疫系统与大脑细胞联系起来

近来有多项研究发现,精神分裂症或与双向情感障碍具有高度的遗传相似性,二者脑细胞中疾病特异性的改变显示重叠率超过70%,而这些改变会影响基因的表达;近日,一项刊登在国际杂志CellReports上的研究......