Antpedia LOGO WIKI资讯

周兴江:跨越世界光电子能谱仪的“巅峰”

跨越世界光电子能谱仪的“巅峰”——访周兴江研究员 “也许在不久的将来,借助真空紫外激光角分辨光电子能谱仪,高温超导电性产生的机理将被揭示,高温超导体所表现出的许多奇异的物理性质将得到解释。” 2007年的元旦刚过不久,作为“真空紫外激光角分辨光电子能谱仪”研究项目的负责人,中科院物理研究所周兴江研究员在接受本网工作人员专访时做出如上的表述。 国际首创的“火眼金睛” 2006年12月28日,由中科院物理研究所和理化技术研究所联合研制的真空紫外激光角分辨光电子能谱仪通过了中科院主持的鉴定。由龚昌德院士担任组长,包括于渌院士、甘子钊院士、夏建白院士等参加的鉴定组给予了该项目高度的评价,“真空紫外激光角分辨光电子能谱仪的主要性能和技术指标在国际上处于领先地位:它具有超高的分辨率、超高的光束流量,具备了研究 体效应的可能性。” 为什么专家鉴定组特别要强调这一系统在‘体效应’研究方面的优势呢?周兴江研究员深入浅出地为......阅读全文

紫外吸收光谱的原理

紫外吸收光谱的原理是光在与物质作用时,物质可对光产生不同程度的吸收。我们利用测量物质对某些波长的光的吸收来了解物质的特性,这就是吸收光谱法的基础。物质的结构决定了物质在吸收光时只能吸收某些特定波长的吸收,也就是说,物质对光的吸收是具有选择性的。通过测量物质对不同波长的吸收程度(吸光度),以波长为横坐

紫外光谱的波长范围

紫外光谱的波长范围是400nm以下。可见光是电磁波谱中人眼可以感知的部分,可见光谱没有精确的范围;一般人的眼睛可以感知的电磁波的波长在400~760nm之间,但还有一些人能够感知到波长大约在380~780nm之间的电磁波。紫外光是电磁波谱中波长从0.01~0.40微米辐射的总称,不能引起人们的视觉。

紫外可见吸收光谱原理

1. 紫外可见吸收光谱产生的原理紫外可见吸收光谱是由于分子(或离子)吸收紫外或者可见光(通常200-800 nm)后发生价电子的跃迁所引起的。由于电子间能级跃迁的同时总是伴随着振动和转动能级间的跃迁,因此紫外可见光谱呈现宽谱带。紫外可见吸收光谱的横坐标为波长(nm),纵坐标为吸光度。紫外可见吸收光谱

怎么利用origin绘制紫外谱图

1、下载并打开origin软件。2、首先我们打开origin这个软件同时打开我们的实验数据。3、从仪器上直接导出的数据不是这样的,需要分裂一下。4、选择并复制exxcel表格上的数据,再打开origin粘贴在表格里,如图所示。5、添加完数据以后,点击上方的“绘图”会出现下图中的界面,选择你需要的图形

怎么利用origin绘制紫外谱图

1、打开Origin8,新建文件,选择porject类型;2、在弹出的数据框中导入要生成曲线的数据,然后将设置好横坐标和纵坐标,同时在每列表格上面三栏填写好单位、标题等3、选择所有数据,选择导出图表(左下角曲线的下拉菜单里面选择line+symbol)4、其他要更改的地方都可以通过单击形成对话框进行

电子能谱仪的简介

电子能谱仪是利用光电效应测出光电子的动能及其数量的关系,由此来判断样品表面各种元素含量的仪器。电子能谱仪可分析固、液、气样品中除氢以外的一切元素,还可研究原子的状态、原子周围的状况及分子结构,在表面化学分析、分子结构、催化剂、新材料等研究领域中已得到应用。

多功能电子能谱仪

  多功能电子能谱仪是一种用于材料科学领域的分析仪器,于2007年10月31日启用。  技术指标  X射线光电子能谱(XPS),可使用单色化Al靶X射线源及双阳极Al/Mg靶X射线源,包括大面积XPS(0.8×2 mm),微区XPS(最小选区15 μm)、深度剖析XPS及XPS成像,空间分辨率<3

俄歇电子能谱学

俄歇电子能谱学(Auger electron spectroscopy,简称AES),是一种表面科学和材料科学的分析技术。因此技术主要借由俄歇效应进行分析而命名之。产生于受激发的原子的外层电子跳至低能阶所放出的能量被其他外层电子吸收而使后者逃脱离开原子,这一连串事件称为俄歇效应,而逃脱出来的电子称为

俄歇电子能谱(2)

基本原理物理原理入射电子束和物质作用,可以激发出原子的内层电子形成空穴。外层电子填充空穴向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。俄歇电子和X射线产额入射电子束和物质作用,可以激发出原子的内层电子。外层电子

俄歇电子能谱仪

俄歇电子能谱仪(Auger Electron Spectroscopy,AES),作为一种最广泛使用的分析方法而显露头角。这种方法的优点是:在靠近表面5-20埃范围内化学分析的灵敏度高;数据分析速度快;能探测周期表上He以后的所有元素。虽然最初俄歇电子能谱单纯作为一种研究手段,但现在它已成为常规分析

电子能谱法的简介

中文名称电子能谱法英文名称electron spectroscopy定  义记录试样物质被激发的电子能谱的分析方法。应用学科机械工程(一级学科),分析仪器(二级学科),能谱和射线分析仪器-能谱和射线分析仪器分析原理(三级学科)

电子能谱仪的分类

电子能谱仪的类型有许多种,它们对样品表面浅层元素的组成能做出比较精确的分析,有时还能进行在线测量如膜形成成长过程中成分的分布、变化的探测等,使监测制备高质量的薄膜器件成为可能。光电子能谱仪光电子谱仪分析样品成分的基本方法,就是用已知光子照射样品,然后检测从样品上发射的电子所带有关于样品成分的信息。试

电子能谱仪的构成

一台电子能谱仪的基本组成由所研究的试样、一个初级激发源和电子能量分析器组成。它们安装在超高真空(UHV)下工作。实际上,经常再备有一个UHV室安装各种试样制备装置,和可能的辅助分析装置。此外还有数据采集与处理系统。 (1)真空系统。电子能谱分析技术本身的表面灵敏度要求必须维持超高真空。现代电子能谱仪

俄歇电子能谱(3)

俄歇跃迁对于自由原子来说,围绕原子核运转的电子处于一些不连续的"轨道 ”上,这些 “ 轨道 ” 又组成K、L、M、N 等电子壳层。 我们用“ 能级 ”的概念来代表某一轨道上电子能量的大小。由于入射电子的激发,内层 电子被 电离, 留下一个空穴。 此时原子处于激发态, 不稳定。 较高能级上的一

俄歇电子能谱(1)

俄歇电子能谱(Auger electron spectroscopy,简称AES),是一种表面科学和材料科学的分析技术。因此技术主要借由俄歇效应进行分析而命名之。这种效应系产生于受激发的原子的外层电子跳至低能阶所放出的能量被其他外层电子吸收而使后者逃脱离开原子,这一连串事件称为俄歇效应,而逃脱出

紫外光谱和荧光光谱的区别

紫外光谱是分子中某些价电子吸收了一定波长的电磁波,由低能级跃近到高能级而产生的一种光谱,也称之为电子光谱.目前使用的紫外光谱仪波长范围是200~800nm。其基本原理是用不同波长的近紫外光(200~400nm)依次照一定浓度的被测样品溶液时,就会发现部分波长的光被吸收。如果以波长λ为横坐标(单位nm

紫外光谱和荧光光谱的区别

是分子中某些价电子吸收了一定波长的电磁波,由低能级跃近到高能级而产生的一种光谱,也称之为电子光谱.目前使用的紫外光谱仪波长范围是200~800nm。其基本原理是用不同波长的近紫外光(200~400nm)依次照一定浓度的被测样品溶液时,就会发现部分波长的光被吸收。如果以波长λ为横坐标(单位nm),吸收

紫外光谱和荧光光谱的区别

紫外光谱是分子中某些价电子吸收了一定波长的电磁波,由低能级跃近到高能级而产生的一种光谱,也称之为电子光谱.目前使用的紫外光谱仪波长范围是200~800nm。其基本原理是用不同波长的近紫外光(200~400nm)依次照一定浓度的被测样品溶液时,就会发现部分波长的光被吸收。如果以波长λ为横坐标(单位nm

紫外光谱和荧光光谱的区别

紫外光谱是分子中某些价电子吸收了一定波长的电磁波,由低能级跃近到高能级而产生的一种光谱,也称之为电子光谱.目前使用的紫外光谱仪波长范围是200~800nm。其基本原理是用不同波长的近紫外光(200~400nm)依次照一定浓度的被测样品溶液时,就会发现部分波长的光被吸收。如果以波长λ为横坐标(单位nm

紫外光谱和荧光光谱的区别

紫外光谱是分子中某些价电子吸收了一定波长的电磁波,由低能级跃近到高能级而产生的一种光谱,也称之为电子光谱.目前使用的紫外光谱仪波长范围是200~800nm。其基本原理是用不同波长的近紫外光(200~400nm)依次照一定浓度的被测样品溶液时,就会发现部分波长的光被吸收。如果以波长λ为横坐标(单位nm

紫外光谱和荧光光谱的区别

紫外光谱是分子中某些价电子吸收了一定波长的电磁波,由低能级跃近到高能级而产生的一种光谱,也称之为电子光谱.目前使用的紫外光谱仪波长范围是200~800nm。其基本原理是用不同波长的近紫外光(200~400nm)依次照一定浓度的被测样品溶液时,就会发现部分波长的光被吸收。如果以波长λ为横坐标(单位nm

紫外光谱和荧光光谱的区别

紫外光谱是分子中某些价电子吸收了一定波长的电磁波,由低能级跃近到高能级而产生的一种光谱,也称之为电子光谱.目前使用的紫外光谱仪波长范围是200~800nm。其基本原理是用不同波长的近紫外光(200~400nm)依次照一定浓度的被测样品溶液时,就会发现部分波长的光被吸收。如果以波长λ为横坐标(单位nm

紫外/可见吸收光谱测量

荷兰Avantes公司突破了传统分光光度计采用转动光栅进行光谱扫描的技术,使用2048像素CCD阵列探测器和平面衍射光栅,实现了不必转动光栅而对整个光谱的快速测量,每秒可实现900幅光谱的超高速采样,保证了测量的准确性和重复性,同时搭配浸入式光纤探头或流通池进行取样,从而适用于野外测量、应急检测、在

紫外/可见吸收光谱测量

荷兰Avantes公司突破了传统分光光度计采用转动光栅进行光谱扫描的技术,使用2048像素CCD阵列探测器和平面衍射光栅,实现了不必转动光栅而对整个光谱的快速测量,每秒可实现900幅光谱的超高速采样,保证了测量的准确性和重复性,同时搭配浸入式光纤探头或流通池进行取样,从而适用于野外测量、应急检测、在

紫外-可见吸收光谱法

分子的紫外-可见吸收光谱法是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析法。分子在紫外-可见区的吸收与其电子结构紧密相关。紫外光谱的研究对象大多是具有共轭双键结构的分子。胆甾酮(a)与异亚丙基丙酮(b)分子结构差异很大,但两者具有相似的紫外吸收峰。两分子中相同的O=C-C=C共轭结构

紫外可见光谱工作原理

  I 影响紫外可见吸收光谱的因素共轭效应:体系形成大π键,使各能级间的能量差减小,从而电子跃迁的能量也减小,因此共轭效应使吸收发生红移。  溶剂效应:1.由于溶剂的存在使溶质溶剂发生相互作用,使精细结构消失。2.  对π→π*跃迁来讲,溶剂极性增大时,吸收带发生红移;对于n→π*跃迁来讲,吸收光谱

紫外吸收光谱有何特征

紫外吸收光谱主要是反应了π电子,特别是共轭体系的π电子的跃迁,也有n电子(非键轨道)的跃迁,一般紫外分光计是200nm以上,所观察到的是π到π*,n到π*的跃迁,一些常见物质的最大吸收波长可以通过查表得到

紫外可见吸收光谱的特征

1. 吸收峰的形状及所在位置——定性、定结构的依据2. 吸收峰的强度——定量的依据A = lg(1/T)=κCLT:透射率k:摩尔吸收系数,单位:L·cm⁻¹·mol⁻¹C:浓度L:光程长紫外可见光谱的两个重要特征波峰:λmax, κ例:λmaxEt = 279 nm (κ=5012,logk=3.

紫外光谱图怎么看

观察吸收峰的位置和强度:在紫外光谱图上,吸收峰的位置和强度通常与化学键的构型和官能团有关。因此,观察吸收峰的位置和强度可以推断分子中化学键和官能团的类型和位置。分析波长范围:紫外光谱图通常在200-400纳米波长范围内进行测量。观察吸收峰的位置和强度,还应该注意到这些峰值出现的波长范围。不同类型的官

紫外吸收光谱产生的原因

分子具有不同的特征能级,当分子从外界吸收能量后,就会发生相应的能级跃迁,产生吸收光谱。物质分子吸收一定波长的紫外光时,分子内电子发生跃迁,所产生的吸收光谱即为紫外吸收光谱。