Antpedia LOGO WIKI资讯

“153”纳米催化烟气脱硫脱硝装置问世节能可大于50%

8月9日由北京普泰科技开发有限公司研发的“153”纳米催化烟气脱硫脱硝装置,在京通过专家鉴定。“研发单位采用氧化法进行烟气脱硫脱硝技术的研发,其方向正确,在技术完善后具有良好的应用前景。”专家组组长、中国环境科学研究院研究员张凡说。 该公司总经理崔成哲介绍,与目前国内电厂普遍使用的湿法烟气脱硫技术相比,“153”装置采用电子催化、粉尘絮凝工艺,可以在不用价格高昂的含氨氧化还原剂情况下实现脱硝的目标;纳米催化技术可以使二氧化硫和二氧化氮在几秒时间内充分反应或分解,大大缩短反应时间;尤其是低密度催化墙及液膜吸附系统,无需增压风机及高压循环水泵,同比节能≥50%。 “简单来讲,以10吨型燃煤锅炉为例,常规技术处理1吨煤排除的烟气、水、电费成本约38元,该技术仅需约8.4元;吨锅炉成本前者约8万元,该技术约5万元。”崔成哲说。 听取介绍后,专家认为,该装置采用了催化氧化技术,使二氧化硫、氮氧化物的氧化和吸收速率大大提高,减少了......阅读全文

氧化联合催化氧化技术介绍

氧化联合催化氧化技术UV光氧化-臭氧法是将臭氧与紫外光辐射相结合的一种高级氧化过程,始于1970年。臭氧-双氧水-UV光氧化法对处理难氧化物质比较有效,可使氧化速度提高10~10000倍。  UV光氧化-臭氧法中的氧化反应为自由基型,即液相臭氧在紫外光辐射下分解产生·OH自由基,由·OH自由基与水中

催化醇高效氧化研究获进展

醇无溶剂催化氧化是合成精细化学品的绿色途径。其中,钯基催化剂因其优异的催化活性而得到广泛研究和应用。日前,中国科学院山西煤炭化学研究所副研究员张斌、研究员覃勇团队,利用原子层沉积技术实现了在氧化铈上构筑稳定且氧化钯和零价钯+氧化钯比例稳定可调的钯团簇催化剂,有望进一步改变反应路径,提升钯催化剂

“铠甲催化”实现室温CO高效氧化

近日,中科院大连化学物理研究所研究员邓德会团队在“铠甲催化”研究方面取得新进展,该团队创新地将铂(Pt)纳米颗粒负载在石墨烯封装的镍化钴(CoNi)铠甲催化剂(Pt|CoNi)上,利用CoNi的电子穿透效应对Pt—石墨烯界面处的电子结构精确调控,实现了室温下一氧化碳(CO)的高效氧化。相关研究成果发

“铠甲催化”实现室温CO高效氧化

近日,中科院大连化学物理研究所研究员邓德会团队在“铠甲催化”研究方面取得新进展,该团队创新地将铂(Pt)纳米颗粒负载在石墨烯封装的镍化钴(CoNi)铠甲催化剂(Pt|CoNi)上,利用CoNi的电子穿透效应对Pt—石墨烯界面处的电子结构精确调控,实现了室温下一氧化碳(CO)的高效氧化。相关研究成果发

金属氧化物的催化机制

金属氧化物在催化领域中的地位很重要,它作为主催化剂、助催化剂和载体被广泛使用。就主催化剂而言,金属氧化物催化剂可分为过渡金属氧化物催化剂和主族金属氧化物催化剂,后者主要为固体酸碱催化剂(见酸碱催化作用)。碱金属氧化物、碱土金属氧化物以及氧化铝、氧化硅等主族元素氧化物,具有不同程度的酸碱性,对离子型(

新型催化剂实现双功能光催化水氧化/还原

  近日,中科院大连化物所研究员刘健团队与华东师范大学教授胡鸣团队合作,提出了一种新颖、简单的策略,利用普鲁士蓝类似物PBA和二氧化钛(TiO2 )合成了具有非对称性结构的PBA—TiO2  两面神(Janus)微/纳米结构催化剂,实现双功能光催化水氧化/还原。相关研究发表在《尖端科学》上。 J

催化氧化法处理高浓度有机废水

催化氧化法处理高浓度有机废水  该方法是在高效表面催化剂存在的条件下,利用二氧化氯在常温常压下氧化高浓度有机废水。  在降解COD的过程中,打断有机分子中的双键发色团,如偶氮基、硝基、硫化羰基、碳亚氨基等,达到彻底脱色的目的,同时有效提高BOD5/COD值。一般的高浓度有机化工废水色度高,有机物难以

MOFs基催化剂的制备和VOCs催化氧化方面取得进展

  当今工业的高速发展给人们工作生活带来便利的同时也造成了严重的大气污染问题,挥发性有机物VOCs是造成大气污染的主要因素之一。催化氧化法是在催化剂的作用下将VOCs在较低温度下分解为无毒或低毒的物质,由于其能耗低、二次污染小、可以对不同种类及浓度的VOCs进行有效治理,且技术成熟,被广泛应用于工业

催化氧化法生产葡糖酸内酯的介绍

  在8%的葡萄糖水溶液300g中加入上述Pd/C催化剂,在50℃下通入空气,同时滴加NaOH溶液,保持pH=9.0~9.5,当pH值不再下降时反应结束,滤去催化剂,用阳离子交换树脂处理得310g葡萄糖酸液。在70℃下减压浓缩至浓度80%~85%,冷却至40℃以下,加入晶种,待结晶后过滤、干燥得22

黄嘌呤氧化酶的催化机理

黄嘌呤氧化酶活性位点中钼蝶呤辅因子的钼原子另外与一个端氧、多个硫原子以及一个端羟基相连。在黄嘌呤至尿酸的反应中,钼上的氧先是转移至黄嘌呤分子上,然后,水分子与活性中间体进行加成,使活性的钼中心得到再生。与其他已知的含钼氧还酶类相同的是,产物中新引入的氧原子是来自于水分子中的氧,而非氧气分子。