Antpedia LOGO WIKI资讯

CRISPR先驱发表研究新成果

细菌和古生菌一直在与入侵者做斗争,为此它们演化出了多种防御机制,CRISPR-Cas适应性免疫系统就是其中之一。Cas1-Cas2蛋白复合体会捕获30–40bp的外源DNA,将它们整合到CRISPR的间隔区,形成自己的免疫记忆。如果这种外源DNA再次入侵,细菌就能够及时将其剪切,从而保护自身安全。 加州大学伯克利分校的研究团队前不久在Molecular Cell杂志上发表文章,揭示了CRISPR介导免疫记忆的一个重要机制。这篇文章的通讯作者是著名CRISPR先驱Jennifer A. Doudna。Doudna教授是CRISPR技术的共同开发者,曾因这一技术获得了“生命科学突破奖”(Breakthrough Prize),是CRISPR专利的有力竞争者。 规律成簇的间隔短回文重复CRISPR与内切酶Cas9的组合,可以在引导RNA的指引下,靶标并切割入侵者的遗传物质。2012年研究者们利用这一特点,将CRISPR系统发展......阅读全文

Nature突破性成果:首次证实南极冰层之下也有生命

  科学家们首次发现,西南极冰盖半英里之下也存在着生命,而且这些生命组成了活跃的生态系统。这一重大成果发表在八月二十一日的Nature杂志上。  南极位于地球的最南端,是世界上发现最晚的大陆,覆盖着厚度极高的冰层。研究显示,在庞大的南极冰盖之下,生命以微生物的形式存在。这些微生物大多是单细胞的古生菌

你还在“谈菌色变”吗?

  生活中很多人“谈菌色变”,觉得细菌就是肮脏的代名词,是传播疾病的媒介。事实上,细菌也分为有益的和有害的,不仅我们生存的环境中到处都是细菌,而且我们的身体上就居住着无数的细菌。  我们生活的环境离不开细菌。从我们呼吸的空气,到辽阔的大海,都充满了细菌。  大约在30亿年前,地球本是无氧的环境。而地

11月22日《自然》杂志内容精选

    海洋甲烷还原机制  海洋沉积物中的甲烷厌氧氧化与硫酸盐还原耦合在一起,是由能够利用甲烷的古生菌(ANME)和δ变形菌完成的。然而,该反应背后的生化通道及两个物种之间的电子转移机制却一直难以确定。现在,Jana Milucka等人发现,这一反应涉及ANME将硫酸盐还原为元素硫及

11月22日《自然》杂志精选

海洋甲烷还原机制  海洋沉积物中的甲烷厌氧氧化与硫酸盐还原耦合在一起,是由能够利用甲烷的古生菌(ANME)和δ变形菌完成的。然而,该反应背后的生化通道及两个物种之间的电子转移机制却一直难以确定。现在,Jana Milucka等人发现,这一反应涉及ANME将硫酸盐还原为元素硫及由δ变形

共享“甜蜜” 2020年全国糖生物学会议无锡召开

  分析测试百科网讯 2020年9月20日-21日,2020年全国糖生物学会议在无锡君来世尊酒店召开。本届糖生物学会议由中国生物化学与分子生物学会糖复合物专业委员会主办,江南大学生物工程学院、糖化学与生物技术教育部重点实验室承办,分析测试百科网协办。大会主持人:江南大学糖化学与生物技术教育部重点实验

研究人员把GC-MS用于古细菌化石研究

  分析测试百科网讯 研究人员相信,他们使用常用于法医学的GC-MS分析方法,发现了新古典分子化石。  根据微生物学家卡尔·沃斯(Carl Woese)设计的系统,地球上有三个生物领域:细菌、古细菌和真核生物。到目前为止,古细菌的分布情况仍然不清楚,特别是对于可追溯到200多万年的地质时期。这是因为

Natureasia聚焦:CRISPR/Cas研究进展Top20

  CRISPR/Cas系统是目前发现存在于大多数细菌与所有的古菌中的一种后天免疫系统,其以消灭外来的质体或者噬菌体并在自身基因组中留下外来基因片段作为“记忆”。  CRISPR/Cas系统全名为常间回文重复序列丛集/常间回文重复序列丛集关联蛋白系统(clustered regularly inte

Cell:首次发现针对III型CRISPR-Cas系统的蛋白抑制剂

  如果说CRISPR复合物听起来很熟悉,那是因为它们是新一波基因组编辑技术的最前沿。CRISPR/Cas系统是目前发现存在于大多数细菌与所有的古菌中的一种免疫系统,被用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统。  在CRISPR/Cas系统中,CRISPR是规律间隔性成簇短回文重复序列(cl

科学家构建新的生命树

   4月11日在《Nature Microbiology》发表的一项研究中,科学家们构建了了一种新的生命之树,显示了所有已知生物之间的关系,通常分类学家们分成三个领域:真核生物、细菌和古生菌。这个新的生命树的最大分支,是由对科学界来说全新的细菌组成。延伸阅读:首个包含230万种物种的生命之树发布;

产甲烷菌的分离、培养及鉴定

实验概要1. 掌握厌氧菌的分离、培养及活菌计数的一般方法。2. 观察产甲烷菌的形态特征并了解产甲烷菌的生长特性。实验原理1. 产甲烷菌:厌氧微生物在自然界分布广泛,种类繁多,其生理作用日益受到人们的重视。产甲烷菌是专性厌氧菌,对氧气非常敏感,因此,产甲烷菌的分离、培养及活菌计数的关键是提供无氧和低氧

海底蛋白爱“吃光”

  组寻找“吃光”蛋白质的科学家,在加利利海海底偶然发现了50年来的第一个新品种。这种蛋白质可帮助植物和微生物从太阳中获取光的细胞成分。这一意想不到的发现可帮助研究人员更好地了解微生物是如何感知光线的,并促进新型光学研究以及数据存储技术的发展。  许多生物利用光敏蛋白质收集太阳的能量,并帮助其生存。

50年来蛋白新品种 促进光学研究及数据存储技术的发展

图片来源:ALINA PUSHKAREV 一组寻找“吃光”蛋白质的科学家,在加利利海海底偶然发现了50年来的第一个新品种。这种蛋白质可帮助植物和微生物从太阳中获取光的细胞成分。这一意想不到的发现可帮助研究人员更好地了解微生物是如何感知光线的,并促进新型光学研究以及数据存储技术的发展。

454高通量测序-研究土壤微生物的新手段

在陆地生态系统中,在土壤中生活有数量庞大的微生物种群,包括原核微生物如细菌、蓝细菌、放线菌及超显微结构微生物, 以及真核生物如真菌、藻类( 蓝藻除外) 、地衣等。它们与植物和动物有着明确的分工,主要扮演“分解者”的角色,几乎参与土壤中一切生物和生物化学反应,担负着地球C、N、P、S 等物质循环

454高通量测序——研究土壤微生物的新手段

  在陆地生态系统中,在土壤中生活有数量庞大的微生物种群,包括原核微生物如细菌、蓝细菌、放线菌及超显微结构微生物, 以及真核生物如真菌、藻类( 蓝藻除外) 、地衣等。它们与植物和动物有着明确的分工,主要扮演“分解者”的角色,几乎参与土壤中一切生物和生物化学反应,担负着地球C、N、P、S 等物质循环的

454高通量测序——研究土壤微生物的新手段(二)

二、高通量测序在土壤微生物研究中的应用 1.1 研究土壤微生物的物种多样性 微生物物种多样性主要从对微生物类群即细菌、真菌和放线菌这三大类群的数量及其比例组成来描述微生物多样性,或者按照微生物在生态系统中的作用将其划分成不同的功能群(function group),通过某

人体内的微生物菌群与出生方式有关?

  近年来,人体内微生物菌群的数量及它们的重要性逐渐引起人们的关注。  人体内生存着数以万亿计的细菌及其他单细胞微生物,例如古生菌和原生生物,其中大多数位于肠道内。据估计,它们的数量甚至超过了人体自身细胞的数量。  众所周知,人体内的微生物生态系统对我们的健康有深远的影响。  人体微生物研究工程(H

微生物或是导致第三次生物灭绝的主要原因

  美国麻省理工学院(MIT)地质物质学家丹尼尔·罗斯曼(Daniel Rothman)的研究小组就距今2.5亿年前的美国麻省理工学院起因提供了新证据。近日,罗斯曼、格雷戈瑞·方尼特(Gregory Fournier)和其他5名美国麻省理工学院、中国科学院南京地质古生物研究所研究人员在美国《

原来...我们的脚下,是巨大的地下生态系统

  根据“deep life”研究的结果,地球远比我们过去认为的要活跃得多。这项研究揭示了在我们脚下存在一个巨大丰富的生态系统,它的面积几乎是地球上海洋总面积的两倍。  尽管地下环境酷热、没有光照、没有营养且强烈的压力,但是科学家们估计,地下生物圈充满了150亿至230亿吨的微生物,这是地球上所有人

Nucleic Acids Research:CRISPR实现可逆的基因沉默

  北卡罗莱纳州立大学的研究人员利用细菌和古生菌自身的免疫系统,开发了可逆的基因沉默技术。这一成果发表在近期的Nucleic Acids Research杂志上,为相关领域的研究提供了一个强大的工具。  “这一技术不仅能够加快科研发现,还能帮助我们更好的改造微生物,”文章的资深作者,北卡罗莱纳州立大

帮癌细胞“减肥”还能抑制肺癌?

   关于CRISPR专利事件的不断升级的争论产生了行为不当的指控。  遗传学家George Church因有很多对基因组进行排序和修改的先进方法,而被称为“合成生物学的奠基人”。同时,他可能还是世界上努力使已经灭绝的长毛猛犸象(woolly mammoth)重生的头号权威人士。  可现在却出了一个

中科院利用CRISPR及TALEN技术获基因组编辑新突破

  来自中科院遗传与发育生物学研究所、中科院微生物研究所的研究人员利用TALEN和CRISPR-Cas9技术,在六倍体面包小麦中成功实现了同时编辑3个同源等位基因(homoeoallele) ,并由此赋予了小麦对白粉菌(powdery mildew)的遗传性抵抗力。这一突破性的成果发表在7月20日的

权威期刊提出一类新的tRNA

  转移RNA(tRNA)是一种古老的分子,是所有活细胞不可缺少的组成部分,它们存在于所有三种生命界中,即古生菌、细菌和真核生物。在细胞中,它们是将信使RNA(mRNA)序列翻译成氨基酸序列的机制的组成部分。延伸阅读:Cell惊人发现:抑癌的tRNA片段。  在最近几年中,测序技术的进步使研究人员能

科学家称微生物是导致地球大灭绝的罪魁祸首

  近日科学家们声称2.52亿年前一种微生物释放了大量的甲烷进入地球大气层,从而引发全球性灾难,导致90%的海洋物种和70%的陆地脊椎动物灭绝。这是研究人员提出的一种假设,旨在解释科学界长久存在的谜题之一:在二叠纪末期究竟发生了什么导致地球历史上第五次大灭绝的发生。这场灾难事件规模之庞大,使得650

北大乔杰、汤富酬、黄岩谊发表环状RNA新成果

  早在几十年前,生物学家们就发现了环状RNA。与线性RNA相比,环状RNA受到的关注比较少,一直被认为是剪切过程中发生的错误。随着二代测序的发展,近几年人们意识到环状RNA其实是非常普遍的。这些分子广泛存在于多种生物的细胞中(从古生菌、酵母、小鼠到人类),能够通过不同途径影响基因表达,很可能在细胞

科研人员揭开细菌生理调控“密码”

  由于抗生素滥用,近年来频现的超级细菌正威胁着人类生命健康。双组分信号转导系统是细菌体内最重要的信号转导系统,调控着细菌的大部分生命活动。中国科学院联合美国杜克大学专家在细菌双组分系统介导的pH变调控机制研究中获重要进展,这一研究揭开了细菌生理调控“密码”,为新型抗菌药物的研发提供了重要参考价值。

英国Apogee洞察细微的流式细胞仪技术创新及应用

英国Apogee洞察细微的流式细胞仪                      

CRISPR专利纷争升级

  遗传学家George Church开创了测序并改变基因组的方法。他被称为合成生物学的创始人,并且在复活灭绝猛犸象的努力中可能是全球的顶级权威。  如今,一场针对谁拥有一项革命性基因编辑技术专利权的战争,可能部分取决于Church的科学技能是否被视为“普通”。  这是美国专利和商标局(USPTO)

加州大学研究显示:微生物占据人类身体过半区域

  据英国广播公司(BBC)报道,科学家表示,微生物占据人类身体的过半区域,人体细胞仅占全身细胞总数的43%。图片来源于网络  基于对人类身体中鲜为人知的部分,即微生物群的了解,人们对过敏和帕金森病的认识也有迅速的转变。同时,该研究领域甚至提出了“人类”意味着什么的问题,以及由此可能产生的创新疗法。

Science:重大进展!揭示功能多样化的V型CRISPR-Cas系统

  古生菌和细菌的CRISPR/Cas系统保护它们的宿主免受噬菌体和其他的可移动遗传元件的影响。根据最新的分类标准,CRISPR/Cas系统可分为两大类:第1类CRISPR/Cas系统和第2类CRISPR/Cas系统。  第1类CRISPR/Cas系统分为I型CRISPR/Cas系统(标签基因为Ca

《PNAS》八大热点文章

  对于大多数哺乳动物来说,线粒体和线粒体DNA都是只通过母系遗传。尽管其他生物偶尔会经历父系遗传,但之前关于人类父系遗传线粒体的报道大多是因为污染或样本混淆。  然而,美国辛辛那提儿童医院的黄涛生博士和梅奥诊所的Paldeep Atwal博士称他们在三个家庭中发现了mtDNA双亲遗传。研究人员还在