视网膜自我修复研究有突破

来自新华网的消息,英国伦敦大学眼科学院和伦敦穆尔菲尔兹眼科医院的研究人员8月1日宣布,他们发现人类视网膜中也有类似斑马鱼的能够修复视网膜的细胞,希望5年内将研究结果用于失明患者治疗。 斑马鱼是一种体长3厘米至4厘米的热带鱼,因色彩鲜明的斑纹而得名。这种常见的小鱼一直是科学家关注的焦点,因为它具有自我修复破损视网膜的独特能力。 视网膜受损是造成失明的重要原因。研究人员发现,斑马鱼视网膜内具有干细胞特征的放射状胶质细胞能够分化成健康的视网膜细胞,从而修复受损的视网膜,人类视网膜中也存在这样的细胞,只是不具活性。 研究人员已在实验室里成功把放射状胶质细胞分化为视网膜细胞,并大量繁殖,还向患有视网膜疾病的老鼠体内移植放射状胶质细胞,这些细胞分化为健康视网膜细胞,使视网膜功能恢复。 如今,他们正在研究为人类进行这项手术的可能性。不过,研究人员也表示,患者手术后会因移植他人细胞而产生排斥反应。研制出一种药物去激活人类体内不具......阅读全文

定向基因编辑改写斑马鱼的DNA

  斑马鱼是基因研究中一种常用的模式生物。现在科学家可以对它们的基因组进行定向的编辑。   据Nature近日报导,在对脊椎动物和人类疾病的研究中,斑马鱼是一种重要的模式生物。它的卵是透明的,在体外孵化,它的繁殖周期很短,生长速度快,这些都意味着,很适合在生物生存的条件下对它的胚胎进行密切研究。而

解锁电鳗发电之谜,让斑马鱼发电

研究人员证实,他们发现的基因控制区只控制肌肉中钠通道基因的表达,而不控制其他组织。电鱼和电鳗一样,可以根据种类、性别、甚至个体来区分其他电鱼,这要归功于它们的电器官,它还允许它们传输和接收类似于鸟叫声的信息。最近发表在《科学进展》(Science Advances)上的一项研究描述了微小的基因改变是

研究揭示斑马鱼“自我定位”神经回路

斑马鱼幼鱼能够弄清它们在哪里,去过哪里,以及如何回到原来的位置。幼体斑马鱼在被洋流推离航道后如何追踪自己的位置并导航呢?科学家发现,这与一种多区域的大脑回路有关。相关研究近日发表于《细胞》。 “我们研究了一种行为,在这种行为中,斑马鱼幼鱼必须记住过去的位移,以准确地保持它们的位置,因为水流可能把

武汉研究斑马鱼揭示器官再生之谜

  身长约4厘米,具暗蓝与银色纵条纹 基因与人类的相似度达87% 心脏能再生 约2000种人类疾病能出现在其身上 胚胎在体外发育,且完全透明 一种经济实惠的实验动物,一对斑马鱼一次可生产300只“鱼宝宝”   “斑马鱼的基因与人类相似度高达87%,人类无法长出第二个心脏,而斑马鱼的心脏却能再生

斑马鱼平台助力HSP发病机理研究

遗传性痉挛性截瘫(HSP)又称家族性痉挛性截瘫,是一种神经系统退行性变性疾病。其病理改变主要是脊髓中双侧皮质脊髓束的轴索变性或脱髓鞘,以胸段最重。 临床表现为双下肢肌张力增高,腱反射活跃亢进,病理反射阳性,呈剪刀步态。2018年5月11日,中国国家卫生健康委员会等5部门联合制定了《第一批罕见病目录》

斑马鱼研究全套装备配置清单

斑马鱼由于养殖方便、繁殖周期短、产卵量大、胚胎体外受精、体外发育、胚体透明等特点,已成为生命科学研究的新宠,是最受重视的脊椎动物发育生物学模式之一。你的实验室在做斑马鱼研究吗?斑马鱼研究需要哪些工具?你知道斑马鱼研究的最强装备吗?服务全球科学家48年历史,WPI为您供全套的斑马鱼研究工具,包括斑马鱼

自感光视网膜神经节细胞在近视形成中的重要作用

       复旦大学脑科学研究院/医学神经生物学国家重点实验室杨雄里院士领导的科研团队,最近对近视机制的研究取得重要进展,首次揭示了一类特殊的视网膜神经节细胞—— ipRGC(intrinsically photosensitive retinal ganglion cell)在近视形成中的重要作

通过流式细胞仪研究斑马鱼胚胎中细胞周期分析

[精华提要]结合绿色荧光蛋白表达的细胞周期分析广泛的用于研究绿色荧光蛋白标记的细胞的细胞周期分布。这个方案是一种用绿色荧光蛋白标记的斑马鱼胚胎来分析细胞周期的方法。材料与试剂1.        PBS(Invitrogen公司14040)2.        胎牛血清3.        乙醇4.   

纯化和培养能多系分化的斑马鱼神经脊细胞

  由廖博士所领导隶属于哈佛医学院麻省总医院的研究者贝斯提•奇尼科鲁博士及王亚伟博士第一次培养及描绘由斑马鱼胚胎分离出的神经脊细胞具有多能性的特性。这项重要的研究被报导在2014年二月的实验生物医学的期刊上。神经脊细胞是一群独特的细胞族群,由神经板的横向边界所诱导,在胚胎发育及脊椎发育的过程中则须仰

如何抑制感光细胞死亡?

为什么视网膜上的感光细胞会死亡?这个过程能被抑制吗?国际科学家团队在ICTER的Andrzej Foik博士的参与下进行的研究,可能有助于开发减缓视力丧失的疗法。视网膜变性是一种具有多种病因的多层面疾病,是世界范围内致盲的主要原因之一。这种视网膜疾病的一些病例有遗传基础。因此,引起感光细胞死亡的突变

Dev-Cell:转基因斑马鱼的彩色皮肤

  美国杜克大学的研究人员,利用基因工程改造的方法,造成单个的皮肤细胞可以产生70种不同颜色的荧光。该研究发表在最近的《Developmental Cell》上。  该团队并非是为了好玩才做成这样五彩斑斓的斑马鱼,实际上,他们希望通过颜色标记来研究斑马鱼皮肤的愈合。利用颜色来标记细胞,可以让斑马鱼皮

斑马鱼如何长出新的神经元

  研究人员已经发现了使得斑马鱼的大脑能够在其受到创伤性损害之后再生的机制。与哺乳动物不同,这些在淡水中生长的小鲦鱼因为脑部损伤所致的炎症会伴有新神经元的产生。   如今,Nikos Kyritsis及其同事展示,在损伤反应中,斑马鱼脑部的炎症会激活特定的信号传导分子及神经胶质细胞,后者可促进

斑马鱼嗅觉作用主要是左鼻子

斑马鱼嗅觉作用主要是左鼻子   如同人有“左撇子”一样,鱼也有类似“左撇子”的鼻子。   日前,日本名古屋市立大学与国立遗传学研究所的一项新研究发现,斑马鱼发挥嗅觉作用的主要是左鼻子。相关研究论文在线刊登在了近期出版的《自然—神经科学》(Nature Neuroscience)杂志上。  

除了小鼠,斑马鱼也被盯上了-|-PNAS

  植有人类肿瘤细胞(红色)的斑马鱼胚胎,这一模型有望帮助医生快速筛选癌症患者最佳的治疗方案(图片来源:Rita Fior团队)  最新一期《PNAS》在线发表了一篇题为“Single-cell functional and chemosensitive profiling of combinato

敲降斑马鱼基因的方法学比较

  一、基因敲降的前期准备工作相同   1.1 生物信息学分析目标基因在斑马鱼早期胚胎发送过程中是否有表达。   1.2 收集斑马鱼早期发育胚胎(通常为48 hpf前的胚胎),提取总RNA,然后进行体外转录(RT)。   1.3 设计检测目标基因表达的PCR引物,以1.2获得的cDNA为模板,

斑马鱼基因敲除是怎么做的

  一、基因敲除的设计方案   1.1 基因的基本信息   确认斑马鱼基因的基本信息,包括名称ID号等,一般会在NCBI等查询。   1.2 分析基因结构、氨基酸序列等做生物学信息的分析   1.3分析蛋白质的保守结构功能域   通过综合考虑,设计最佳的KO靶点。   1.4

-Nat-Commun:斑马鱼可用于癫痫药物筛选

  化学药物Clemizole在“Dravet综合症”的一个斑马鱼模型中能有效防止癫痫类发作。在Nature Communications上发表的这一发现确认了一个新方法,后者有可能被用来识别癫痫病的另类疗法。   “Dravet综合症”是一种从婴儿时期开始的严重癫痫,以严重的、自发的和复发的

斑马鱼基因敲除是怎么做的

  一、基因敲除的设计方案   1.1 基因的基本信息   确认斑马鱼基因的基本信息,包括名称ID号等,一般会在NCBI等查询。   1.2 分析基因结构、氨基酸序列等做生物学信息的分析   1.3分析蛋白质的保守结构功能域   通过综合考虑,设计最佳的KO靶点。   1.4

Nature:系统解析斑马鱼参考基因组

  斑马鱼(Zebrafish)是研究发育生物学的新兴模式动物。斑马鱼由于具有饲育容易、胚胎透明、体外受精、突变种多、遗传学工具成熟等诸多优点,近年来已成为研究脊椎动物发育与人类遗传疾病的新兴模式动物。   近日,英国桑格研究所(Wellcome Trust Sanger Institute)

斑马鱼基因敲除是怎么做的?

一、基因敲除的设计方案1.1 基因的基本信息确认斑马鱼基因的基本信息,包括名称ID号等,一般会在NCBI等查询。 1.2 分析基因结构、氨基酸序列等做生物学信息的分析 1.3分析蛋白质的保守结构功能域通过综合考虑,设计最佳的KO靶点。 1.4 分析并设计CRISPR,分析其效率及脱靶的情况一般使用C

寄生虫感染或破坏斑马鱼实验

  研究人员表示,一种感染实验室斑马鱼的常见寄生虫可能令多年的行为实验结果产生混淆。不过,批评者认为,这个案例仍有待证实。  和小鼠一样,斑马鱼被用在全球的实验室中,以研究从药物疗效到诸如精神分裂症和自闭症等遗传性疾病和障碍的所有事情。由于斑马鱼和人类都具有高度社会性,因此研究人员认为,和啮齿类动物

敲降斑马鱼基因的方法学比较

一、基因敲降的前期准备工作相同1.1 生物信息学分析目标基因在斑马鱼早期胚胎发送过程中是否有表达。1.2 收集斑马鱼早期发育胚胎(通常为48 hpf前的胚胎),提取总RNA,然后进行体外转录(RT)。1.3 设计检测目标基因表达的PCR引物,以1.2获得的cDNA为模板,进行PCR扩增,确认目标基因

敲降斑马鱼基因的方法学比较

  一、基因敲降的前期准备工作相同   1.1 生物信息学分析目标基因在斑马鱼早期胚胎发送过程中是否有表达。   1.2 收集斑马鱼早期发育胚胎(通常为48 hpf前的胚胎),提取总RNA,然后进行体外转录(RT)。   1.3 设计检测目标基因表达的PCR引物,以1.2获得的cDNA为模板,

斑马鱼的胚胎原位杂交试验实录

收集斑马鱼的胚胎,在Holfretor水中培养,到达所需要的发育时期时,用蛋白酶去除卵膜,用4%多聚甲醛固定,在4℃保存,二十四小时后用50%甲醇2%多聚甲醛溶液洗,然后换成甲醇,在-20C 保存,待用(两天和两天以上的胚胎需要用双氧水处理,去除色素。或者使用苯锍脲稀溶液培养,可阻断色素的形成)原位

缩氨酸可保护眼睛后部视网膜感光层中的神经元细胞

  美国国家眼科研究所(NEI)的研究人员已经确定了某些被称为缩氨酸的短蛋白质片段是如何保护眼睛后部视网膜感光层中的神经元细胞的。这种肽有一天可能被用于治疗视网膜退行性疾病,如老年性黄斑变性(AMD)。    培养中PEDF处理的无长突神经细胞和光感受器细胞。PEDF可促进无轴突的广泛生长,保护光感

PNAS:揭开感光细胞死亡之谜

  哈佛附属的麻省总医院眼耳专科血管生成实验室的研究人员,首次在视网膜色素变性RP动物模型中确定了视锥感光细胞的死亡模式。由哈佛医学院眼科教授麻省总医院眼科主任Joan W. Miller和Demetrios G. Vavvas博士领导的这项研究,进一步指出RIP激酶通路能够作为治疗视网膜色

感光细胞的基本信息

感光细胞(英语:Photoreceptor cell),是在眼球的视网膜中发现的,具有光转导能力的一类特殊神经上皮细胞。更具体点说就是,感光细胞从视野范围内吸收光子,然后经一系列特殊复杂的生物化学通路,将这些信息以膜电位改变的形式进行信号传导。最后,视觉系统对这些信号信息进行处理,以呈现一个完整的视

双酚S(BPS)毒性对神经发育及其它方面的影响机制研究-2

图02为自由泳试验的结果。由图02可得知:不同浓度BPS情况下,斑马鱼幼鱼活动的总距离和运动速度呈下降趋势(随着BPS浓度的增加而减少/降低)。与控制组相比,0.3 mg/L和3.0 mg/L 剂量下有明显差异。与此同时,阳性对照组中斑马鱼幼鱼活动总距离和平均运动速度也有所下降。 这些结果表明:

斑马鱼:一条游上“试药路”的小鱼

  蓝色的世界、嗡嗡作响的机器、不时出现的人影……湖蓝色的塑料鱼缸里,七八条小鱼在水中自由游弋,不时停下来盯着外面的世界。看见人影走近,有的小鱼开始在鱼缸里打转,有的则依旧悠然地游来游去。  这些体长不过5厘米、带有墨蓝色斑纹的斑马鱼并不知道,它们从一出生就已同那些野外的同类们分道扬镳,成为人类医药

诺奖得主Science解开斑马鱼条纹的秘密

  斑马鱼,一种小的淡水鱼,得名于一种醒目的蓝黄色相间条纹图案。在幼鱼皮肤生长过程中,有三种主要的色素细胞类型——黑色细胞、反光银色细胞和黄色细胞出现,它们多层镶嵌,构成特征性的颜色图案。  众所周知,所有这三种细胞类型必须相互作用才能形成适当的条纹,但是,形成成鱼条纹的色素细胞的胚胎起源,直到现在