真皮与血管漫反射光谱的相关性研究

摘 要 基于真皮与血管漫反射光谱的相关性活体实验研究真皮漫反射光谱法测量血糖浓度的可行性:成功剥离兔子股动脉血管,实现血管光谱的直接测量;在调节兔子的血糖浓度变化的过程中,同时监测兔子的血管漫反射光谱和皮肤漫反射光谱。实验结果表明,血管漫反射光谱与皮肤漫反射光谱之间的相关系数达到0188以上。分别基于血管漫反射光谱和皮肤漫反射光谱建立校正集模型,并预测得到相应的血糖浓度集G1和G2,两组血糖浓度预测值之间的相关系数为0190。因此,真皮漫反射光谱信号能够有效地反应血液信息,从而实现血糖浓度的无创检测。点击这里进入下载页面:进入下载页面......阅读全文

拉曼光谱新应用:智能手表测血糖

  据报道,下一款三星Galaxy Watch,无论是三星Galaxy Watch 4还是三星Galaxy Watch Active3都将具备无创监测血糖水平的功能,让糖尿病患者无需每天刺破手指数次。  该公司与麻省理工学院(MIT)合作,利用拉曼光谱测量血糖水平,并在2020年1月的国际期刊《Sc

毛细血管全血糖(CBG)测定

20世纪70年代发明的袖珍血糖仪,可用一滴毛细血管全血测定血糖,患者可自测血糖(SMBG),快速得出结果,决定治疗变动,缩短住院日,这是糖尿病治疗史上的一个里程碑。靠此才有可能于20世纪80年代开始糖尿病并发症与控制试验(DCCT)研究,并于1993年明确了严格控制血糖的治疗目标。CBG测定原理一般

连续光谱-线状光谱-吸收光谱-发射光谱的区别

区别和关系:连续态光谱和线状光谱都是发射/吸收光谱,而吸收光谱只是吸收,发射光谱发射而已。后两者包含于前两者。连续光谱是原子中处于束缚态的电子跃迁到自由散射态或者相反所产生的发射/吸收光谱, 因为没有确定的能级间隔, 表现出宽泛的 ,不确定的光谱带, 叫做连续光谱。线状光谱是原子中电子的两个束缚态能

低血糖与心血管风险分析

  高血糖有害,低血糖同样有害,甚至危害更大。因此在降糖治疗过程中,既要积极合理的控制高血糖,还应努力避免低血糖。关于低血糖与不良心血管事件风险的要点信息如下:    1.强化降糖与低血糖风险:    在现有大型降糖治疗试验中,强化降糖组与常规治疗组低血糖事件发生率分别为:    1)ACCORD研

Sci-Rep:高血糖如何引起血管损伤

根据华威大学的研究人员的最新研究,我们人体的血管细胞处理葡萄糖的机制在糖尿病发病过程中变得不受控制。这种紊乱可能与血栓和炎症的形成有关。相关结果发表在最近的《Scientific Reports》杂志上,进一步的研究结果可以帮助确定预防糖尿病并发症引起器官损害的新方法。该研究探讨了正常和高浓度糖葡萄

红外光谱是什么光谱

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到

红外光谱是什么光谱

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到

红外光谱是什么光谱

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到

红外光谱是什么光谱

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到

红外光谱是什么光谱

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到

红外光谱是什么光谱

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到

红外光谱是什么光谱

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到

红外光谱是什么光谱

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到

紫外光谱的光谱图

右图是乙酸苯酯的紫外光谱图。紫外光谱图提供两个重要的数据:吸收峰的位置和吸收光谱的吸收强度。从图中可以看出,化合物对电磁辐射的吸收性质是通过一条吸收曲线来描述的。图中以波长(单位nm)为横坐标,它指示了吸收峰的位置在260 nm处。纵坐标指示了该吸收峰的吸收强度,吸光度为0.8。吸收光谱的吸收强度是

连续光谱,线形光谱,吸收光谱什么区别

太阳光属于太阳光谱,连续光谱、线形光谱及吸收光谱的具体区别如下:1、含义上的区别连续光谱是指光(辐射)强度随频率变化呈连续分布的光谱。根据量子理论,原子、分子可处于一系列分立的状态。两个态间的跃迁产生光谱线。线状光谱,又称原子光谱,单原子气体或金属蒸气发出光谱均属线状光谱。吸收光谱是指物质吸收光子,

连续光谱,线形光谱,吸收光谱什么区别

太阳光属于太阳光谱,连续光谱、线形光谱及吸收光谱的具体区别如下:1、含义上的区别连续光谱是指光(辐射)强度随频率变化呈连续分布的光谱。根据量子理论,原子、分子可处于一系列分立的状态。两个态间的跃迁产生光谱线。线状光谱,又称原子光谱,单原子气体或金属蒸气发出光谱均属线状光谱。吸收光谱是指物质吸收光子,

真皮层的概述

  皮肤可分表皮、真皮及皮下组织三层,最外表为表皮,只有0.2公厘厚,可防止外界异物入侵。由表皮外侧往内,依次是角质层、透明层、颗粒层、有棘细胞层及基底细胞层等五层细部结构。  表皮下层,占有大部分结构的是真皮层,厚度为2公厘左右,又可分为三层,即乳头层、乳头下层及网状层等,大部分由蛋白质所构成,此

真皮乳头层的介绍

  真皮乳头层 又称粒面层或恒温层。是真皮的上层、即从真皮的表面到毛囊及汗腺底部的这一层。其表面与表皮的卜层相互啮合,表皮除去后,该层表面呈现乳突状,故称乳头层。制革时,乳头层又称粒面层,并因该层内含有能调节动物体温的汗腺、脂腺及竖毛肌等组织,故亦称恒温层。乳头层占真皮的厚度比例因动物种类及皮的部位

真皮层的组成

  皮结缔组织的胶原纤维和弹性纤维互相交织在一起,埋于基质内。正常真皮中细胞成分有成纤维细胞,组织细胞及肥大细胞等。胶原纤维,弹性纤维和基质都是由成纤维母细胞分泌产生的。网状纤维是幼稚的胶原纤维,并非一独立成分。真皮组织的厚薄与其纤维组织和基质的多少关系密切,并与皮肤的致密性,饱满度,松弛和起皱现象

红外光谱-紫外光谱-拉曼光谱和核磁共振光谱的区别

一般这些测试手段都是联用的,MS用来提供化合物的相对分子质量,化学式,某些官能团等,注意,没有结构;NMR常用的就两种,H谱和C谱,H谱含氢基团的个数、类型等以及某个基团和其他基团的关系,C谱:碳原子数及C的归属及化合物类型,很明显H谱和C谱是需要联用的,注意对比MS;IR,很简单了,只是官能团,可

“近红外光谱技术”助力研究“无损伤血糖仪”的进展

家用电子血糖仪的发明及在西方国家的普及使用被誉为20世纪医疗器械行业里程碑式的成就。然而,传统电子血糖仪存在显而易见的两大弊端,即病人每次测量血糖值必须消耗两张价格不菲的血糖试纸(目前美国市场上每100张血糖试纸零售价为60~75美元,我国每100张血糖试纸价格为400~500元人民币),如若糖尿病

高光谱成像光谱仪

  高光谱成像光谱仪是一种用于农学领域的分析仪器,于2016年8月11日启用。  技术指标  技术参数:光谱范围1.0–2.5µm;空间像素384;F数F2.0,FOV16°;像素跨轨和延轨FOV,跨轨:0.73毫弧度,延轨:0.73毫弧度;光谱SAMPL5.45nm;噪声150e;峰值信噪比>11

光纤光谱仪的光谱范围

光纤光谱仪是光谱仪的一个分支,以体积小、采集光谱速度快为特点。相较于大型光谱仪通过转光栅获取不同波长的光谱信息,光纤光谱仪利用了阵列CCD同时采集不同波长的光谱信息,结构上更加稳定。又因为光纤光谱仪外型的小巧,目前已经广泛应用于工业领域。    光纤光谱仪一般都包括入射狭缝、准直镜、色散元件(光栅或

原子光谱是明线光谱吗?

稀薄气体发光是由不连续的亮线组成,这种发射光谱又叫做明线光谱,原子产生的明线光谱也叫做原子光谱。原子光谱,是由原子中的电子在能量变化时所发射或吸收的一系列波长的光所组成的光谱。原子吸收光源中部分波长的光形成吸收光谱,为暗淡条纹;发射光子时则形成发射光谱,为明亮彩色条纹。两种光谱都不是连续的,且吸收光

原子发出的光谱是什么光谱

原子光谱,是由原子中的电子在能量变化时所发射或吸收的一系列波长的光所组成的光谱。原子吸收光源中部分波长的光形成吸收光谱,为暗淡条纹;发射光子时则形成发射光谱,为明亮彩色条纹。两种光谱都不是连续的,且吸收光谱条纹可与发射光谱一一对应。每一种原子的光谱都不同,遂称为特征光谱原子光谱包括发射光谱和吸收光谱

光纤光谱仪的光谱范围

光纤光谱仪而言,光谱范围通常在200nm-2500nm之间。由于要求比较高的分辨率就很难得到较宽的光谱范围;同时分辨率要求越高,其光通量就会偏少。对于较低分辨率和较宽光谱范围的要求,300线/mm的光栅是通常的选择。如果要求比较高的光谱分辨率,可以通过选择3600线/mm的光栅,或者选择更多像素分辨

pl光谱和ple光谱的区别

激发光谱(PLE)和发射光谱(PL)。激发光谱:固定发射光的波长,改变激发光的波长,记录荧光强度随激发波长的变化。发射光谱:固定激发光的波长,记录不同发射波长处荧光强度随发射波长的变化。无论是激发还是发射荧光光谱图,其都是记录发射荧光强度随波长的变化。如果荧光光谱中纵坐标为强度,横坐标为波长。那么就

pl光谱和ple光谱的区别

激发光谱(PLE)和发射光谱(PL)。激发光谱:固定发射光的波长,改变激发光的波长,记录荧光强度随激发波长的变化。发射光谱:固定激发光的波长,记录不同发射波长处荧光强度随发射波长的变化。无论是激发还是发射荧光光谱图,其都是记录发射荧光强度随波长的变化。如果荧光光谱中纵坐标为强度,横坐标为波长。那么就

关于ANCA相关性小血管炎的简介

  1、抗中性粒细胞胞浆抗体(ANCA)为其重要的血清学诊断依据,故原发性小血管炎又称为ANCA相关性小血管炎.本病是西方国家最常见的自身免疫性疾病之一,也是近10~20年来国际国内研究的热点,本病临床特点是发热、贫血、肺和肾功能损害、血沉增快等  2、由于WG和MPA的临床表现、治疗和预后相似,且

拉曼光谱,布里渊散射光谱,红外吸收光谱的区别

飞秒检测发现拉曼光谱是基于分子的对称振动产生的能量辐射和吸收,布里渊散射也属于喇曼效应,即光在介质中受到各种元激发的非弹性散射,其频率变化表征了元激发的能量。与拉曼散射不同的是,在布里渊散射中是研究能量较小的元激发,如声学声子和磁振子等。而红外吸收光谱是基于分子的不对称振动而产生的吸收和能量辐射