Antpedia LOGO WIKI资讯

科学家开发出光量子计算芯片

中国科研人员参与的国际团队8月20日在英国《自然—光子学》杂志上发表论文称,他们利用硅光子集成技术开发出一款通用光量子计算芯片。其能用于执行不同的量子信息处理任务,从而在推动光量子计算机大规模实用化上迈出重要一步。 光量子计算机使用光子来编码量子比特,通过对光子的量子操控及测量实现量子计算,有望解决密码破译、分子模拟、大数据处理等传统计算机难以解决或解决不好的计算任务。 中国的军事科学院国防科技创新研究院、国防科技大学、中山大学和北京大学,以及英国的布里斯托尔大学等机构的科研人员合作,利用硅基光波导芯片集成技术,设计并开发出面向通用量子计算的核心光量子芯片。使用这一芯片制造的光量子计算机可实现小规模量子检索、分子模拟和组合优化问题等应用。 论文第一作者、军事科学院国防科技创新研究院强晓刚博士在接受采访时说:“这一芯片集成了超过200个光量子器件,具有高稳定性、可快速配置等特性,能实现不同的量子信息处理应用,如量子优化算......阅读全文

光量子通量密度

光量子通量密度通常用μmol/m2·s或者μE/m2·s表示,它们间的换算为1μE=1μmol/m2·s。其中1μmol/m2·s=6.022*1023*10-6个光子每秒钟穿过1平方米的面积。下面我们就针对西洋参叶片蒸腾速率与气孔导度在不同光量子通量密度下的变化趋势来进行一次分析。由表1可知,晴天

光量子测试系统概述

  光量子测试系统是一种用于能源科学技术领域的计量仪器,于2014年7月17日启用。  技术指标  (1) 仪器原理:光子计数 (2) 检测波长范围:185-900nm (3) *检测极限:460 aM荧光素 (4) *信噪比:10000:1 以上 (5) *采样率:50000点/秒~1点/100秒

合成新型近红外发光量子点光致发光量子效率可达25%

  对于太阳能转换器件和生物成像应用程序来说,使用发射近红外光、具有显著斯托克斯位移且再吸收损失小的材料非常重要。近期新加坡国立大学化学系便合成了这样一种新型材料——四元混合巨壳型量子点(InAs−In(Zn)P−ZnSe−ZnS)。这种新型量子点可以实现显著斯托克斯位移,且光致发光量子效率可达25

光量子记录仪介绍

光量子记录仪是记录光合有效辐射 的专用仪器,光合有效辐射关系这作物的光合作用,进而影响作物的产量。因此,在农业或者在林业中,我们通常需要对光合有效辐射进行研究,而光量子记录仪就 是在这样的背景下研发出来的。光合有效辐射就是光强度,即在一秒钟内,每平方米接受到有效光量子的数量(即光量子的摩尔数值),一

叶绿素荧光量子产量

  细胞内的叶绿素分子通过直接吸收光量子或间接通过捕光色素吸收光量子得到能量后,从基态(低能态)跃迁到激发态(高能态)。由于波长越短能量越高,故叶绿素分子吸收红光后,电子跃迁到最低激发态;吸收蓝光后,电子跃迁到比吸收红光更高的能级(较高激发态)。处于较高激发态的叶绿素分子很不稳定,在几百飞秒(fs,

光量子记录仪的特点

植物的光合作用与光合有效辐射息息相关,所以在农业生产中,也有用于农业、林业等研究和生产部门进行光合有效辐射测量的专业仪器,即光量子记录仪,也可以称为光记录仪、自记式光量子计。它的主要特点是探头的光谱响应模拟光合有效函数,仪器数字显示,小巧便携,有良好的准确性和稳定性。 光量子记录仪功能特点:

分子荧光量子产率

荧光量子产率(Quantum yield):荧光物质吸光后所发射的荧光的光子数与所吸收的激发光的光子数之比值。由于激发态分子的衰变过程包含辐射跃迁和非辐射跃迁,故荧光量子产率可表示为                            ɸf  =  kf / (kf + ΣK)  

光量子如何进行单位换算?

光量子是反应光照强度的一个指标,光量子记录仪是一款专门用于测定光量子的科学仪器,另外,光量子记录仪能够记录光合有效辐射,有三种型号。光量子记录仪弥补了以往记录仪只能从电脑设置记录间隔以及读取数据的缺点,一键式切换,可以手动记录也可脱离电脑随时设置采样间隔,自动记录数据。光照是植物生理活动的基础,是必

光量子测定仪的误差描述

  手持测量仪的绝对误差和相对误差基本上是由传感器测量探头的精度引起,仪器的精度基本上由仪器的价格决定的。   传感器的相对误差主要由光电探头光谱响应误差产生,不同精度探头的价格为什么这么大的区别?我们需要了解光电探头的光谱响应误差表述的是什么。   对于光量子传感器,相对误差主要是由光电探头

手持光量子测量仪相关叙述

  手持光量子测量仪,是植物灯现场测试的常用方法,尽管买到了全球知名品牌的测量仪,对测量结果的误差分析还是要重视,种植参数的测量误差会影响企业的产品设计可靠性。  手持仪器传感器测量误差包括以下内容  1. 绝对校准错误:标准灯精度及其标准灯的校准。  2. 相对误差:传感器的光谱响应误差。  3.