Antpedia LOGO WIKI资讯

识别癌症DNA!这种纳米金颗粒只要10分钟

近期,发表于《自然》子刊《Nature Communications》上的一项研究,为癌症早期诊断带来了令人眼前一亮的新方法。昆士兰大学的澳大利亚生物工程与纳米技术研究所(Australian Institute for Bioengineering and Nanotechnology,AIBN)的研究人员发现,多种癌症的癌细胞DNA都有一种特异性的结构,在此基础上开发出的一种简便诊断测试,有望成为普适性的癌症早期诊断方法。 “癌症是一类特别复杂、极其多变的疾病,因此很难找到一种所有癌症共有、但又有别于健康细胞的简单特征。”该研究的第一作者Abu Sina博士说。不过现在,他们找到了一种特征,几乎可以满足他们的要求。 从肿瘤上脱落并进入外周血循环的癌细胞(即循环肿瘤细胞,简称CTC)是癌症的生物标志物之一。伴随着癌细胞分裂和死亡,细胞内的各种物质,包括DNA片段,被释放出来,也会进入血液循环。基于CTC的液体活检技术是......阅读全文

识别癌症DNA!这种纳米金颗粒只要10分钟

  近期,发表于《自然》子刊《Nature Communications》上的一项研究,为癌症早期诊断带来了令人眼前一亮的新方法。昆士兰大学的澳大利亚生物工程与纳米技术研究所(Australian Institute for Bioengineering and Nanotechnology,AIB

金纳米颗粒有望提升癌症药物疗效

  金作为一种贵金属在金融和首饰行业应用广泛,英国和西班牙一项最新联合研究7日说,通过技术手段还可以将金纳米颗粒应用在疾病治疗上,以提升癌症药物的疗效,降低副作用。  在实验中,研究人员将金纳米颗粒包裹在一个特殊微型化学装置中,然后将它植入斑马鱼脑部,并有针对性地催化了一次化学反应,证明这种能力可以

基于金纳米颗粒的输送体系将为DNA疫苗输送带来革命

  研究人员开发了一种使用金纳米颗粒将药物输送到细胞内的新方法,这些金纳米颗粒可由电信号激活,发生振动并在细胞膜上形成孔洞,从而将重要的治疗性分子(如DNA、RNA和蛋白质等)输送到细胞内。与其他方法不同的是,这种方法并不将药物与纳米颗粒结合在一起,这大大提高了药物疗效。  这个由布莱根妇女医院的副

单颗粒ICP-MS应用 | 西红柿吸收金纳米颗粒

  伴随着工程纳米材料在各个不同产品和过程的使用不断增加,人们开始对纳米颗粒的释放对环境和人类健康造成的影响产生了担心。要研究纳米颗粒对环境的影响,就必须探索纳米颗粒如何通过在水和土壤中的迁徙而被植物吸收的。如果纳米颗粒最终为食品作物所吸收,那么人类就直接面临ENPs释放造成的影响。   这项研究

单颗粒ICP-MS应用:西红柿吸收金纳米颗粒

伴随着工程纳米材料在各个不同产品和过程的使用不断增加,人们开始对纳米颗粒的释放对环境和人类健康造成的影响产生了担心。要研究纳米颗粒对环境的影响,就必须探索纳米颗粒如何通过在水和土壤中的迁徙而被植物吸收的。如果纳米颗粒最终为食品作物所吸收,那么人类就直接面临ENPs释放造成的影响。 这项研究工作的目标

《科学》:金纳米颗粒微观结构首次得到揭示

“这是一项应该被写入教科书的重要发现”  纳米颗粒的广泛应用并不意味着科学家对它们的微观结构了如指掌。美国科学家的一项最新研究,首次揭开了科研中经常用到的一种金纳米颗粒的神秘面纱。相关论文以封面文章的形式发表在10月19日的《科学》杂志上。 由于金的活动性弱且对空气和光线都不敏感,实验室中经常用金

采用纳米颗粒物追踪分析技术进行纳米金测定

引用纳米金胶通常用于多种用途,例如:透射电子显微镜(TEM)/扫描电子显微镜(SEM)分析,作为免疫抗体和生物感应器的抗体/蛋白质标签,作为催化剂,以及与聚合材料混合时作为生物支架。 背景纳米颗粒物追踪分析技术可以在液态悬浮中直接观测并检测纳米颗粒的粒径。这种逐个颗粒的可视化和分析能力可以克服一些技

采用纳米颗粒物追踪分析技术进行纳米金测定

引用纳米金胶通常用于多种用途,例如:透射电子显微镜(TEM)/扫描电子显微镜(SEM)分析,作为免疫抗体和生物感应器的抗体/蛋白质标签,作为催化剂,以及与聚合材料混合时作为生物支架。 背景仪器提供了独一无二的功能,可以在液态悬浮中直接观测并检测纳米颗粒的粒径。这种逐个颗粒的可视化和分析能力可以克服一

生物DNA调控生长出金纳米花

  一个跨国研究团队日前宣布,成功利用生物DNA片段实现了金纳米粒子的生长调控。研究人员表示,该成果通过单一步骤对纳米尺度的金属材料进行可自定义精确结构设计和制备,有望创造大量具有先进功能及充满结构艺术性的新型纳米材料。   该研究将生物DNA应用于没有生命的无机化学领域,通过对反应边界条件的控制,

苏州纳米所利用DNA折纸术构建金纳米棒

  等离子体纳米粒子及其组装结构因为优异的光学特性在纳米科技中具有广泛应用,如超材料、生物传感器、光电器件等。精准构建等离子体纳米结构对于光学特性的深入研究意义重大,而精确调控等离子体纳米粒子的表面功能性质则是进一步获得复杂自组装体系的关键。目前借助各种物理和化学方法,可在纳米粒子表面的一定区域范围