新型成像技术如何改善人类健康研究?

本文整理了多篇研究成果,共同解读新型成像技术如何改善科学家们对人类健康的研究!图片来源:Science Advances 【1】Science子刊:新成像技术揭示大脑如何处理信息 doi:10.1126/sciadv.aau7046 如今,科学家们发现了一种新的方法,可以快速有效地绘制出大脑神经元之间巨大的连接网络,他们将红外激光刺激技术与动物的功能性磁共振成像相结合,生成了大脑连接的图谱,相关研究成果发表在Science Advances杂志上。 这种新技术能够以高精度轻松地绘制活体大脑的连接图为医学和工程领域的其他应用打开了大门;研究人员将一根200微米的光纤穿入研究动物的大脑,并刺激大脑的特定区域。然后,他们能够通过测量不同区域血氧水平的超高场核磁共振成像(MRIs)看到一系列串联的活连接传统上,研究人员通过将染料直接注入大脑并在死后重建这些连接,绘制出了大脑中这些连接的图谱,这是一个非常缓慢、昂贵和耗时的过程......阅读全文

活体成像技术原理及应用

  活体成像技术主要是利用一套非常灵敏的光学检测仪器,能够直接监控活体生物体内的细胞活动和基因行为。通过这个系统,可以观测活体动物体内肿瘤的生长及转移,感染性疾病发展过程、特定基因的表达等生物学过程。其优点为较传统屠宰动物相比,该技术能够对同一种实验对象在不同时间点进行记录,跟踪同一观察目标(标记细

合成孔径声呐成像技术

  1.1 合成孔径声呐成像算法  声呐成像是由回波信号解算出声呐图像(反射系数矩阵)的过程。SAS成像算法是在SAR算法、CT成像算法、地震波反演、声呐方位波束形成方法基础上发展起来的。SAS成像的研究目前主要集中在条带式(stripmap)正侧视(broadside looking)场景,斜视和

质谱成像技术应用宝典

  现代生物学研究已经不再停留在仅从组织中识别一种特殊的化学成分,或者蛋白成分上了,我们需要精确的了解这些物质是如何分布,如何构成的,解答这些问题需要更进一步的实验技术,比如免疫组化或免疫荧光检测方法,但是这些技术需要特殊的抗体,而且效率低,偏差大。  因此研究人员将目光转向了质谱技术上,以质谱为基

FluorCam多光谱荧光成像技术应用案例—多光谱荧光成像...

FluorCam多光谱荧光成像技术应用案例—多光谱荧光成像是什么1. 多光谱荧光的发现及特性二十世纪八九十年代,植物生理学家对植物活体荧光——主要是叶绿素荧光研究不断深入。激发叶绿素荧光主要是使用红光、蓝光或绿光等可见光。当科学家使用UV紫外光对植物叶片进行激发,发现植物产生了具备4个特征性波峰的荧

新成像技术“看到”人脑基因开关

  最近,美国国家卫生研究院(NIH)的脑研究项目团队开发出一种新的神经成像技术,让人们第一次看到了人脑中基因开关的位置,为了解影响精神健康的基因提供了有力工具,将来有望用于检测老年性痴呆、精神分裂或其他脑病的早期迹象。  据《科学美国人》网站11日报道,目前,遗传DNA序列能解释的精神疾病很少,在

红外成像仪的技术应用

  GOEZ-C3是一种结构紧凑的热像仪可以大幅度降低夜间驾驶的危险性。它能使驾驶员看得更远而清晰度比使用标准前灯时更高。驾驶员能够探测和监控道路上和道路附近的行人、动物或物体,有更多时间对任何潜在危险做出反应。热成像是一种使驾驶员视觉增强的有效系统, 其视距是前灯的5倍,能明显降低夜间驾驶风险。它

红外热成像诊断技术的应用

  是依靠被动接受人体散发出来的红外热能成像。红外热成像诊断技术采用先进的热敏感光学成像技术,接受人体发出的红外热能,经过专用计算机存储处理后,产生清晰精确的热像彩色图谱。其基本功能:热监视、热诊断、热测定、热研究。红外热像诊断技术对人体无射线伤害,对环境无辐射污染。可真实动态观察人体组织机构的功能

红外成像仪的技术应用

  GOEZ-C3是一种结构紧凑的热像仪可以大幅度降低夜间驾驶的危险性。它能使驾驶员看得更远而清晰度比使用标准前灯时更高。驾驶员能够探测和监控道路上和道路附近的行人、动物或物体,有更多时间对任何潜在危险做出反应。热成像是一种使驾驶员视觉增强的有效系统, 其视距是前灯的5倍,能明显降低夜间驾驶风险。它

凝胶成像系统技术进展和应用

随着分子生物学研究逐步普及,凝胶成像系统在国内的需求在不断增长    不管是什么用途,凝胶成像系统的组件都是相似的。都有一个拍摄系统、一个带有特殊光源的暗箱与获取和分析凝胶图片的软件组成。”但是,大部分凝胶成像系统提供了不同的产品特性来满足不同科学研究的需要。快速发展的电子技术、光学技术和成像

英攻克磁共振成像新技术

最新的磁共振成像研究使人们进一步了解脑部疾病。图片来源:英国诺丁汉大学  磁共振成像(MRI)领域的一项新发现有望提高多发性硬化症等脑部疾病的诊断率和监测效果。研究人员指出,来自英国诺丁汉大学彼得·曼斯菲尔德爵士磁共振中心的这一研究成果,可能会为医学界的磁共振成像提供一种新工具。  该项研究发表在日

CCD成像原理的CCD新技术

随着用户的要求不断提高,为了迎合用户需求,占领市场,近几年一些厂商又推出了几种新的CCD技术。●2002年初,富士发布第三代Super CCD。2003年初,富士发布第四代Super CCD(见右图)●2002年2月,美国Foveon公司发布多层感色CCD技术。在Foveon公司发表X3技术之前,一

光谱成像技术及其应用(三)

Paul J.Williams等利用sisuCHEMA高光谱成像技术,对镰刀霉属生长特性及其品种差异进行了研究,论文发表在2012年Anal Bioanal Chem.上(Near-infrared (NIR) hyperspectral imaging and multivariate

体内荧光成像技术的进展(二)

可激活定靶探针可激活定靶探针一般用于酶活的功能成像。它们往往含有两个以上的等同或不同的色素团,两个色素团通过酶特异性多肽接头彼此紧密相连。这类探针主要呈黑色,没有或者很少发射荧光,这主要是由于非常相近(等同色素团)或者共振能的转移(不同色素团 )所造成的淬灭效应所致。多肽接头的切除,使它们的

质谱成像技术的完美解释

现代生物学研究已经不再停留在仅从组织中识别一种特殊的化学成分,或者蛋白成分上了,我们需要精确的了解这些物质是如何分布,如何构成的,解答这些问题需要更进一步的实验技术,比如,免疫组化或免疫荧光检测方法,但是这些技术需要特殊的抗体,而且效率低,偏差大。因此,研究人员将目光转向了质谱技术上,以质谱为基础的

FluorCam多光谱荧光成像技术介绍

FluorCam多光谱荧光成像系统作为FluorCam叶绿素荧光成像系统的最高级型号,是目前唯一有能力实现了一台仪器上同时完成叶绿素荧光、UV-MCF多光谱荧光、NDVI归一化植被指数以及GFP、YFP、BFP、RFP、CFP、DAPI等荧光蛋白与荧光染料的成像分析功能。同时也可以加装RGB真彩成像

体内荧光成像技术的进展(一)

体内荧光成像技术利用一架灵敏的照相机,检测活的整体小动物荧光团的荧光发射,从而获得清晰的图像。为了克服活组织的光子衰减,通常优先选取近红外区(NIR)的长波发射荧光团,包括广泛应用的小分子靛炭菁染料。NIR探针的数目最近随着有机、无机和生物荧光纳米颗粒的采用而不断增加。在体内荧光成像领域,成像策略和

太赫兹近场扫描显微成像技术

太赫兹(Terahertz, THz)辐射通常是指频率范围处于0.1—10THz的电磁辐射,其波段位于电磁波谱中的微波和红外之间。近年来,太赫兹技术得到了迅猛发展和广泛应用,成为前沿交叉学科领域之一。太赫兹波由于光子能量很低、具有非破坏性和非等离特性,使得太赫兹在材料检测和无损探测方面有着广泛应

光谱成像技术及其应用(二)

功能特点:1) 拥有GigE Vision和CameraLink两种接口选择,配置软件开发包,满足用户的多样化需求2) 线阵推扫成像方式,在具有高速成像的同时,同一时间获得目标区域的所有光谱信息数据,保证每一个空间像素的光谱纯洁度,为客户提供更加真实准确的高光谱数据3) 采用高透光率的光学设计(F/

光谱成像技术及其应用(一)

高光谱成像叶绿素荧光成像红外热成像一、Specim高光谱成像技术芬兰Specim公司,国际高光谱成像技术的领导者,其产品技术涵盖可见光-近红外(VNIR)、短波红外(SWIR)、中波红外(MWIR)及长波红外LWIR高光谱成像,广泛应用于植物/作物科学、农业科学、中药学、地质地球科学、生态与环境科学

活细胞RNA成像技术获突破

原文地址:http://news.sciencenet.cn/htmlnews/2023/9/509263.shtm

体内荧光成像技术的进展(三)

成像新策略的出现改进探针亲和性的多种途径探针同靶点的紧密和特异性结合通常是成像成功的关键。因为许多成像靶点都位于细胞表面之外,所以多途径原则可以用来改善探针的结合亲和性。最近有两篇文献报道了用于异种移植肿瘤αvβ3 整合素(integrin)体内成像的RGD(Arg-Gly-Asp )寡肽的

质谱成像技术的完美解释

现代生物学研究已经不再停留在仅从组织中识别一种特殊的化学成分,或者蛋白成分上了,我们需要精确的了解这些物质是如何分布,如何构成的,解答这些问题需要更进一步的实验技术,比如,免疫组化或免疫荧光检测方法,但是这些技术需要特殊的抗体,而且效率低,偏差大。因此,研究人员将目光转向了质谱技术上,以质谱为基础的

先进夜视成像技术发展探讨

夜视成像技术是在低照度条件下,将不可见辐射加以转换或将微弱的夜天光进行增强,以实现人眼夜间隐蔽观察的一种成像技术,在夜间侦查瞄准、辅助驾驶、导航制导等现代军事应用中发挥着重要作用。为了确保“单向透明”,充分发挥“拥有黑夜”的技术优势,世界军事强国都投入大量人力、物力开展先进夜视成像技术研究,使夜视装

荧光成像技术的广泛应用

  当今生物医学的发展已由传统基于症状的治疗模式,向以信息为依据的精准诊疗模式转变,医学影像技术的发展反映并引领着临床医学的进步。荧光成像技术具有检测灵敏度高、无辐射危害等优点,在生物医学领域具有广泛的应用。   近日,中国科学院苏州纳米技术与纳米仿生研究所研究员王强斌课题组接受《美国化学学会—纳

何谓核磁共振成像技术

核磁共振成像技术(即MRI)是近十几年来发展起来的一项新技术。它无须借助X 射线,对人体免除了辐射危害。其成像清晰度极高,在不向椎管内注射造影剂的情况下,就可以达到近乎脊髓造影的分辨程度。较之计算机断层扫描和脊髓造影,核磁共振成像技术对于软组织的显影能力要更胜一筹,它可以直接观察脊髓和髓核组织、纤维

研究团队开发新型指纹成像技术-5分钟内即可成像

  指纹的识别与检测是刑侦检测中必不可少的手段之一,传统的指纹检测方法有粉末吹扫法、化学熏蒸法、多金属沉积法、荧光染色法,但由于其可靠性差,环境污染度高,因此发展快速便捷、环境友好型指纹检测方法迫在眉睫。  日前,南京工业大学化学与分子工程学院教授刘睿指导、应用化学专业研究生潘倩倩负责的项目《用于潜

多光子显微镜成像技术:双光子显微镜角膜成像

角膜提供了眼睛的大部分折射能力,由5层组成(图1),从外到内依次是上皮层,鲍曼层、基质、角膜后弹力层(间质膜)、内皮层。 wx_article_20200815180121_819doe.jpg 图1 角膜的组织学结构 上皮层负责阻挡异物落入角膜,厚约50μm,由三

基于超表面的全息成像技术-实现反射式手性全息成像

  从天津大学获悉,该校太赫兹研究中心韩家广教授团队在基于超表面的全息成像技术方面取得突破,首次实现了反射式手性全息成像。相关研究成果已在最新一期《自然》杂志系列刊物《光:科学与应用》上发表。图片源自网络  据介绍,太赫兹波是电磁波的一种,广义上指频率为100GHz—10THz的电磁辐射,太赫兹波具

这种单分子成像新技术可实现纳米晶体高速成像

  一种不依赖荧光发射体的单分子成像新技术可能会在纳米技术、光子学和光伏技术中找到许多应用。该技术是由巴塞罗那的研究人员开发的,其工作原理是在室温下检测单个量子点的受激发射。它的速度使得可以在整个吸收和发射周期内追踪电荷载流子的数量。单分子成像技术已广泛应用于生物学。迄今为止,它们完全基于检测被成像

植物多光谱荧光成像系统多激发光、多光谱荧光成像技术

  多激发光、多光谱荧光成像技术:通过光学滤波器技术,仅使特定波长的光(激发光)到达样品以激发荧光,同时仅使特定波长的激发荧光到达检测器。不同的荧光发色团(如叶绿素或GFP绿色荧光蛋白等)对不同波长的激发光“敏感”并吸收后激发出不同波长的荧光,根据此原理可以选配2个或2个以上的激发光源、滤波轮及相应