气相色谱仪火焰光度检测器工作原理

火焰光度检测器是气相色谱仪用的一种对含磷、含硫化合物有高选择型、高灵敏度的检测器。试样在富氢火焰焚烧时,含磷有机化合物主要是以HPO碎片的方式发射出波长为526nm的光,含硫化合物则以S2分子的方式发射出波长为394nm的特征光。光电倍增管将光信号转换成电信号,经微电流放大纪录下来。此类检测器的灵敏度可达几十到几百库仑/克,zui小检测量可达10-11克。同时,这种检测器对有机磷、有机硫的响应值与碳氢化合物的响应值之比可达104,因此可排除大量溶剂峰及烃类的干扰,十分有利于痕量磷、硫的分析,是检测有机磷农药和含硫污染物的主要工具。、气相色谱仪火焰光度检测器工作原理:当含S、P化合物进入氢焰离子室时,在富氢焰中焚烧,有机含硫化合物首要氧化成SO2,被氢还原成S原子后生成激发态的S2*分子,当其回到基态时,发射出350~430nm的特征分子光谱,zui大吸收波长为394nm。通过相应的滤光片,由光电倍增管接收,经放大后由记录仪记录其......阅读全文

气相色谱仪氢火焰离子化检测器的特点

气相色谱仪氢火焰离子化检测器的主要部件是离子室,离子室由收集极、极化极、气体入口和火焰喷嘴组成。一、优点:1、对碳氢化合物灵敏度高。2、线性范围宽,基线稳定性好。3、检测器死体积小,响应快。4、柱外效应几乎为零。毛细管直接插至喷嘴,消除了柱后峰变宽效应。5、程序升温时载气流量变化不大。6、检测器耐用

气相色谱仪氢火焰离子化检测器工作原理

气相色谱仪氢火焰离子化检测器(FID)的主要部件是离子室,离子室由收集极、极化极、气体入口和火焰喷嘴组成。在极化极和收集极之间加有一直流电压(50~300V)构成的外加电场。一、氢火焰离子化检测器用到的气体:1、N2:载气。2、H2:燃气。3、空气:助燃气。使用时需要调整三者之间的比例关系,使检测器

气相色谱仪气源

.气源准备及净化(1)气源准备 事先准备好需用气体的高压钢瓶(一般大中城市均可购到),庄某一种气体的钢瓶只能装这种气体,每个钢瓶的颜色代表一种气体,不能互换。一般用氮气,氢气,空气这三种气体,每种气体最好准备两个钢瓶,以备用。有的厂使用氢气发生器和空气压缩机也可,但空压机必须无油。凡钢瓶气压下降到1

气相色谱仪

气相色谱仪是利用色谱分离技术和检测技术,对多组分的复杂混合物进行定性和定量分析的仪器。通常可用于分析土壤中热稳定且沸点不超过500°C的有机物,如挥发性有机物、有机氯、有机磷、多环芳烃、酞酸酯等。

气相色谱仪

气相色谱仪 gas chromatography 实现气相色谱分离、分析的一种仪器设备。它的最基本组成包括载气控制、调节系统(提供稳压、稳流的流动相)、进样系统、分离系统(色谱柱)、检测系统、信号记录、处理系统及温度控制系统。根据分析任务的要求,可对气相色谱仪的各个系统进行有效的组合,如对载气采用机

气相色谱仪基础词汇火焰离子化检测器的概念

火焰离子化检测器FID:flame  ionization  detector.  有机物在氢火焰中燃烧时生成的离子,在电场作用下产生电信号的器件。 

气相色谱仪氢火焰离子化检测器的日常维护

气相色谱仪氢火焰离子化检测器(FID)的日常维护包括氢火焰离子化检测器使用注意事项和清洗等。一、氢火焰离子化检测器使用注意事项:1、尽量采用高纯气源,空气必须经过分子筛充分的净化。2、在较好的N2/H2比和较好空气流速的条件下使用。3、色谱柱必须经过严格的老化处理。4、离子室要注意外界干扰,保证使它

高效气相色谱仪氢火焰离子化检测器工作原理

高效气相色谱仪氢火焰离子化检测器(FID)的主要部件是离子室,离子室由收集极、极化极、气体入口和火焰喷嘴组成。在极化极和收集极之间加有一直流电压(50~300V)构成的外加电场。一、氢火焰离子化检测器用到的气体:  1、N2:载气。  2、H2:燃气。  3、空气:助燃气。        使用时需要

气相色谱仪中氢火焰检测器常见故障及检查

1790F型色谱仪是安捷伦公司生产的一款带氢火焰检测器(FID)的气相色谱仪。FID的灵敏度高、体积小、响应快、线性范围广,能有效地与毛细柱等连用,是目前对有机物微量分析应用较理想的检测器。但仪器使用较长时间后,会出现一些硬件上的故障。一般FID系统主要由检测器、检测电路(放大器)和气路三大部分组成

气相色谱仪氢火焰离子化检测器的清洗方法

  即使是正常使用,FID喷嘴和检测器中也会形成沉积物,这些沉积物降低灵敏度,增大色谱噪声和毛刺。相对而言,更换新的喷嘴是比清洗更好的选择,注意清洗喷嘴一定不能划伤喷嘴内部。  当气相色谱仪FID玷污不太严重时,可不必卸下清洗,此时只需要将色谱柱取下,用一根管子将进样口与检测器连接起来,然后通载气将

气相色谱仪中氢火焰检测器常见故障及检查

1790F型色谱仪是安捷伦公司生产的一款带氢火焰检测器(FID)的气相色谱仪。FID的灵敏度高、体积小、响应快、线性范围广,能有效地与毛细柱等连用,是目前对有机物微量分析应用较理想的检测器。但仪器使用较长时间后,会出现一些硬件上的故障。一般FID系统主要由检测器、检测电路(放大器)和气路三大部分组成

气相色谱仪氢火焰检测器使用时的注意事项

1.FID虽然是通用型检测器,但是有些物质在此检测器上的响应值很小或无响应。这些物质包括永久气体、卤代硅烷、H2O、NH3、CO、CO2、CS2、Ccl4等等。所以,检测这些物质时不应使用FID。2.FID是用氢气和空气燃烧所产生的火焰使被测物质离子化的,故应注意安全问题。在未接色谱柱时,不要打开氢

气相色谱氢火焰系统故障判断

FID(氢焔检测器)的灵敏度高、死体积小、响应快、线性范围广,能有效地与毛细柱联用,成为目前对有机物微量分析应用最广的检测器。FID检测 系统主要由检测器、检测电路(放大器)和气路三大部分组成,当发生故障或分析谱图不正常时,应首先判断区分问题是出在哪一部分FID系统常见不正常情况有:1、不能点火--

气相色谱火焰原子吸收光谱联用

气相色谱-火焰原子吸收光谱的联用(GC-FAAS)是由气相色谱分离后的组分通过有加热装置的传输线直接导入火焰原子吸收光谱的火焰原子化器。图11-5-1是庞秀言等人用来测定人体体液中二甲基汞(He2Hg)和氯化甲基汞(MeHgCl)的气相色谱-火焰原子吸收光谱仪联用装置的示意图。由于测定的是烷基汞,故

气相色谱仪气源净化

气相色谱仪气源净化为了出去各种气体中可能含有的水分,灰分和有机气体成分,在气体进入仪器之前应先经过严格净化处理。若全部使用钢瓶气体,有的气相色谱仪附有净化器,且内已填有5A分子筛,活性炭,硅胶,基本可满足要求。若气相色谱仪使用一般氢气发生器,则必须加强对水分的净化处理,故应增大干燥管面积(体积在45

气相色谱仪如何使用,气相色谱仪使用方法

  气相色谱仪是我们实验室仪器中精密仪器之一,精密仪器就是指我们在使用时不能出现失误,否则很容易影响实验结果,那么气相色谱仪的使用方法是怎样的。  在我们使用气相色谱仪的过程中一定要注意一下几点:  1.按仪器说明书的规程操作:  验收仪器时,不仅要清点所有零部件是否齐全,还要检查仪器说明书是否齐备

原酒厂气相色谱仪使用白酒分析气相色谱仪

原酒厂气相色谱仪使用--白酒分析气相色谱仪:GC7980BJ白酒(酒精)检测专用气相色谱仪,白酒是我国的传统饮料酒,工艺精良,风味独特,而其香味组成极其复杂。为了测定白酒中酒精含量,检验是否掺假,气相色谱法已成为白酒行业必不可少的检测方法。白酒(酒精)检测专用气相色谱仪配以高灵敏度的热导/氢火焰检测

气相色谱仪氢火焰离子化检测器的操作条件解析

气相色谱仪氢火焰离子化检测器的操作条件有毛细管插入喷嘴深度、气体种类、气体流速与纯度、检测器温度、极化电压和尾吹气影响等。一、毛细管插入喷嘴深度:毛细管插入喷嘴深度对改善峰形十分重要。通常毛细管插入喷嘴口平面下1~3mm处。若太低,组分与喷嘴表面接触会产生催化吸附,峰形拖尾。若插入太深,会产生很大噪

高效气相色谱仪氢火焰离子化检测器的日常维护

 高效气相色谱仪氢火焰离子化检测器(FID)的日常维护包括氢火焰离子化检测器使用注意事项和清洗等。  一、氢火焰离子化检测器使用注意事项:  1、尽量采用高纯气源,空气必须经过5A分子筛充分的净化。  2、在较好的N2/H2比和较好空气流速的条件下使用。  3、色谱柱必须经过严格的老化处理。  4、

气相色谱仪器故障排除方法之“氢火焰离子化检测器”

  一、 点火前不能调零  放大器预热之后,氢焰尚未点燃,基线应能被调节到记录仪的零点,此时改变放大器上的衰减比,基线应无偏离,如果在上述操作中发现,无论怎样调节微电流放大器旋钮,都不能使记录仪上的基线回到零位,则认为是不能调零故障。  点火前不能调零故障的发生原因有以下几个:接线错误;离子室绝缘不

气相色谱仪的氢火焰离子化检测器FID怎样清洗?

气相色谱仪用久了,仪器内部的污染与磨损会影响检测效果,需要定期对仪器进行清洗,其中氢火焰离子化检测器FID的清洗方法如下:  1)当FID沾污不太严重时,可不必卸下清洗,此时只需要将色谱柱取下,用一根管子将进样口与检测器连接起来,然后通载气将检测器温度升至120℃以上。再从进样口中注入20μL左右的

气相色谱仪氢火焰离子化检测器的操作条件解析

气相色谱仪氢火焰离子化检测器的操作条件有毛细管插入喷嘴深度、气体种类、气体流速与纯度、检测器温度、极化电压和尾吹气影响等。一、毛细管插入喷嘴深度:毛细管插入喷嘴深度对改善峰形十分重要。通常毛细管插入喷嘴口平面下 1~3mm 处。若太低,组分与喷嘴表面接触会产生催化吸附,峰形拖尾。若插入太深,会产生很

气相色谱仪氢火焰离子化检测器工作原理解析

气相色谱仪氢火焰离子化检测器的主要部件是离子室,离子室由收集极、极化极、气体入口和火焰喷嘴组成。在极化极和收集极之间加有一直流电压(50~300V)构成的外加电场。一、氢火焰离子化检测器用到的气体:1、N2:载气。2、H2:燃气。3、空气:助燃气。使用时需要调整三者之间的比例关系,使检测器灵敏度达到

气相色谱仪氢火焰离子化检测器常见故障排除

气相色谱仪氢火焰离子化检测器常见故障排除:一、FID不能点火:  1、可能原因:载气、氢气和空气流量不合适。        故障排除:用流量计检查。  2、可能原因:检测器温度低。        故障排除:升高温度。  3、可能原因:喷嘴堵塞。        故障排除:清洗或更换。  4、可能原因

气相色谱仪氢火焰离子化检测器工作原理解析

气相色谱仪氢火焰离子化检测器的主要部件是离子室,离子室由收集极、极化极、气体入口和火焰喷嘴组成。在极化极和收集极之间加有一直流电压(50~300V)构成的外加电场。一、氢火焰离子化检测器用到的气体:1、N2:载气。2、H2:燃气。3、空气:助燃气。使用时需要调整三者之间的比例关系,使检测器灵敏度达到

气相色谱仪的

温度控制系统在气相色谱测定中,温度控制是重要的指标,直接影响柱的分离效能、检测器的灵敏度和稳定性。温度控制系统主要指对气化室、色谱柱、检测器三处的温度控制。在气化室要保证液体试样瞬间气化;在色谱柱室要准确控制分离需要的温度,当试样复杂时,分离室温度需要按一定程序控制温度变化,各组分在最佳温度下分离;

气相色谱仪原理

气相色谱工作原理:利用试样中各组份在气相和固定液体相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组份就在其中的两相间进行反复多次分配,由于固定相对各组份的吸附或溶解能力不同, 因此各组份在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,按顺序离开色谱柱进入检测器,产生的离子流讯

气相色谱仪结构

气相由载气源、进样部分、色谱柱、柱温箱、检测器和数据处理系统组成。进样部分、色谱柱和检测器的温度均在控制状态。1.柱箱:色谱柱是气相色谱仪的心脏,样品中的各个组份在色谱柱中经过反复多次分配后得到分离从而达到分析的目的,柱箱的作用就是安装色谱柱。由于色谱柱的两端分别连接进样器和检测器,因此,进样器和

气相色谱仪简介

气相色谱仪(GC)是基于色谱柱将混合物分离的原理而实现的一种可对混合气体中各组成成分进行定性甚至定量分析的一种热导检测仪器,它可对固定相上的活度系数、比表面积、分子量、分配系数等物理化学常数进行检测,由于其具有操作简单、控制精确、灵敏度高等特点,因而在生物化学、医药卫生、军事分析、环境保护、石油加工

气相色谱仪原理

气相色谱原理与分馏类似。它们都主要利用混合物中各个组分的沸点(或蒸气压)的差异对混合物中的各个组分进行分离。但是,分馏通常用于常量的混合物的分离,而气相色谱所分离的物质则要少得多(微量)。气相色谱中的流动相(或活动相)是载气,通常使用惰性气体(如氦气)或反应性差的气体(如氮气)。固定相则由一薄层液体