Antpedia LOGO WIKI资讯

再生医学:能容纳多类细胞的淋巴结

来自匹兹堡大学医学院,McGowan再生医学研究所的研究人员报道,淋巴结可以为多种不同细胞,以及来自其他器官的组织提供一个舒适的“家”,这表明未来某一天也许可以实现整个器官移植的一种以细胞为基础的新型方法。 这一研究成果公布在Nature Biotechnology上,这也是第一次发现同一动物模型中的肝细胞,胸腺组织和生成胰岛素的胰岛细胞可以在淋巴结中茁壮成长,而此次并不是这些细胞原本生成之处。 文章的通讯作者,匹兹堡大学医学院高级研究员 Eric Lagasse说,肝炎病毒感染,酒精性肝硬化等疾病会造成极大损伤,只能通过肝移植这唯一的办法挽救病人的性命。还有DiGeorge综合征的儿童患者缺乏胸腺功能,无法产生必需的免疫细胞,他们需要移植手术的帮助,另外糖尿病也可以通过胰脏移植而得到治愈。 “不过,捐赠器官的短缺意味着许多人等不到合适的器官就失去了生命,”Lagasse博士说,“科学家们正在探索细胞疗法......阅读全文

更安全快速的再生医学策略利用直接重编程改变细胞身份

  在死亡之前,已变成皮肤细胞的细胞仍然是皮肤细胞。在过去十年,明显的是,细胞身份并不是一成不变的,它能够通过激活特异性的遗传程序而得以重写。如今,再生医学领域面临着一个问题:这种重写应当采取常规方法,即成熟细胞首先转化回干细胞,或者如果可行的话,采取一种更加直接的方法?  术语“终末分化(term

肿瘤内部竟存在干细胞样T细胞!

  在一项新的研究中,来自美国埃默里大学等研究机构的研究人员发现免疫系统在一些患有肾癌和其他泌尿系统癌症的患者的肿瘤内部建立了“前线作战基地”或者说淋巴结样结构。肿瘤中免疫细胞得到良好支持的患者更有可能在更长的时间内控制他们体内的癌症生长,这一发现可能指导肾癌患者手术后的治疗决策。此外,正在进行的研

上海交大Science子刊 调节成年静息态神经干细胞的分子

   上海交通大学基础医学院解剖学与生理学系徐楠杰课题组和交大医学院附属瑞金医院孙苏亚课题组合作在Science子刊Science Advances(影响因子11.51)上发表了题为“A neuronal molecular switch through cell-cell contact that

脑外肿瘤竟会神秘地“吸走”大脑中的神经干细胞

  2017年的一天,法国科学家Claire Magnon和她的学生被一组数据吓坏了。  她们发现,移植到模式小鼠身上的前列腺肿瘤生长一段时间之后,小鼠大脑脑室下区的神经干细胞(或者神经祖细胞)数量突然减少了。  按照正常的逻辑推理,导致这个现象的原因可能有两个。  一个比较容易接受,就是那些神经干

Cell Stem Cell八大热点文章(11月)

  《Cell Stem Cell》杂志是2007年Cell出版社新增两名新成员之一(另外一个杂志是Cell Host & Microbe),这一杂志内容涵盖了从最基本的细胞和发育机制到医疗软件临床应用等整个干细胞生物学研究内容。这一杂志特别关注胚胎干细胞、组织特异性和癌症干细胞的最新成果。

在将皮肤细胞转变成神经元细胞研究中取得突破性进展

Dr. Zhiping 与 Dr. Ami Citri合作,在操控人类胚胎和出生后的成纤维细胞转变成功能性的神经元细胞(iN)的研究中取得突破性研究进展。 应用- 单细胞基因表达 Fluidigm技术- Biomark系统- 48.48动态微流体整合芯片 介绍美国斯坦福

我国学者发现PTN能够改善衰老导致的新生神经元发育缺陷

  在1978年,Schofield首次提出干细胞的微环境定义,并发现局部微环境对造血干细胞干性的维持是必要的。从此,越来越多的研究定义了各种组织的干细胞微环境。然而,干细胞本身是否能作为微环境因素进而影响其子代细胞的发育尚未完全被揭示。在成体神经发生微环境中,成体神经干/前体细胞能够终生产生功能性

生命科学家裴端卿:人体细胞已可“长生不老”

  如果将人类的长生不老梦比喻成一部73集的长篇电视连续剧,中科院广州生物医药与健康研究院院长裴端卿认为,目前人类的科学研究已经“拍”到了第15集——组成人类身体的细胞已可以实现“长生不老”。  接受广州日报专访时,裴端卿表示,神经干细胞将可用于治疗老年痴呆症、自闭症等特性疾病;多能干细胞有望解决肝

科学家们将皮肤细胞转变成神经元细胞

  应用   - 单细胞基因表达   Fluidigm技术   - Biomark系统   - 48.48动态微流体整合芯片   介绍   美国斯坦福大学医学院以转化开创性医学研究为病人提供优质护理而闻名。Dr. Zhiping(原分子和细胞生理学系博士后)和Dr. Ami Citr

嗅觉神经元起源颠覆旧时理论

  当我们闻到玫瑰的芳香或是健身房的汗味时,负责感知这些信息的是两类感觉神经元。科学家们对这些感觉神经元特别感兴趣,因为神经元中只有它们能在成年阶段再生。一旦这些嗅觉神经元死亡,马上就会有新生神经元来替代,不过发育生物学家们并不清楚这些神经元从何而来。   有些胚胎细胞会发育成为皮肤或中枢神经系统

“聪明”的小鼠可以追赶人类吗

   20世纪末的一部电影《深海变种》中,科学家为了研制抗老年痴呆症的神奇药丸,以古老的生物鲨鱼为实验对象,加大其脑容量,以便萃取更多脑蛋白,却使得鲨鱼越来越强大,最终演变为一场巨大的灾难。  诞生高智商动物是科幻作品经久不衰的主题之一。而近日,美国罗切斯特大学医学中心的科学家将人类大脑细胞注入到小

2019年8月不得不看的Science子刊亮点研究!

  本期为大家带来2019年8月Science子刊重磅研究成果,希望读者朋友们喜欢。  【1】Science子刊:新研究揭示阿尔茨海默病中的内体运输缺陷的真正元凶  DOI:10.1126/scitranslmed.aaz0730  罕见的家族性阿尔茨海默病(familial Alzheimer&#

高内涵成像分析技术在干细胞研究中的应用

  前言   随着人类对生物学领域深入探索和科技创新的不断发展,目前越来越多的研究院所和生物制药公司将细胞水平的功能性研究、模型建立及药物筛选做为一个重要的研究/研发手段。而高内涵成像分析系统就为这种细胞水平的研究提供了集高分辨率、自动化、智能化及海量信息为一体的新的检测平台。干细胞(stem

新疗法助中风小鼠修复受损大脑

  发表在最新一期《自然·医学》杂志上的一项中美合作研究表明,一种新疗法能有效提高中风小鼠的脑神经细胞数量,加速其运动和感觉功能的恢复。  这一疗法实际上是两种治疗手段的结合。第一种是通过手术将人类神经干细胞移植到受损脑区,它们会转变为神经元和其他脑细胞;第二种是向脑内注入一种名为3K3A-APC的

遗传所揭示智能生物材料引导脊髓损伤再生修复的机制

  再生医学为脊髓损伤这一世界医学难题的解决带来了希望。中国科学院遗传与发育生物学研究所戴建武再生医学团队长期从事脊髓损伤再生修复研究,研制了能特异结合生长因子或干细胞的智能生物材料,并在世界上率先开展了神经再生胶原支架修复脊髓损伤的临床研究。近期,戴建武再生医学团队发表系列研究论文,揭示了脊髓损伤

神经再生胶原支架+干细胞,治疗脊髓损伤新希望!

  戴建武再生医学团队研制了能特异结合生长因子或干细胞的智能生物材料,并在世界上率先开展了神经再生胶原支架修复脊髓损伤的临床研究,为脊髓损伤这一世界医学难题的解决带来了希望。  成年哺乳动物脊髓中央管的室管膜细胞被认为是在正常条件下保持静息状态的神经干细胞。这类干细胞可以被脊髓损伤激活,但它们在损伤

2019年,你不容错过的帕金森干细胞疗法

  细胞治疗帕金森的的最初思路很简单:这种进行性疾病的症状在很大程度上是由大脑深处产生多巴胺的神经元的死亡引起的。随着神经递质水平的降低,出现典型的震颤、僵硬和运动缓慢。  研究人员希望通过用新的多巴胺生产器替代那些失去的神经细胞,来重振大脑与人体肌肉的联系,并改善人的整体运动功能。  但在大脑中,

「干细胞疗法」又迈进一步,制造感觉中间神经元

  这项发现意义十分重大,意味着瘫痪病人有望通过细胞移植重新恢复知觉。  感觉中间神经元(sensory interneurons)是一类脊髓神经元,负责将全身信息传递给中枢神经系统,触觉也因此而生。  “恢复行走能力是瘫痪治疗领域的长期目标,”项目领导者神经生物学副教授、这篇《Stem Cell

一些干细胞标志物

胚胎干细胞的标志物 Oct-4: Oct-4(也叫Oct-3或Oct3/4)属POU转录因子一员,最初鉴定为DNA结合蛋白,可通过顺式元件活化基因转录。它在全能胚胎干细胞(ES)和生殖细胞表达。该表达对于维持干细胞的自我更新和多能性是必要的。4 ES的分化导致Oct-4的下调。5 Oct-

【盘点】衰老与疾病的关联性研究进展

  人为什么会变老?对于人类来说,如何才能长生不老真的是一个令人着迷的问题。但是至今为止都没有一个让人满意的答案。衰老一直是生命过程中的核心环节,也是影响整个人类社会健康发展的重要问题。目前世界各国均面临着严重的人口老龄化,数据显示到2050年约三分之一的中国人口年龄将超过60岁。因此,深入了解衰老

神奇!小龙虾血细胞可直接转化成神经元

  人类只能从特定的干细胞中分化出神经细胞,最近的研究却发现,小龙虾可以将血细胞转化成神经元来支持视觉和嗅觉回路。  说到小龙虾,你可能会立刻联想到一顿美味,但是,小龙虾的神经系统并不为人所熟知,然而,最新的科学研究发现了一个有趣的现象:小龙虾竟然可以从血液中生长出新的脑细胞。  从血液中生成脑细胞

衰老大脑中T细胞的浸润或会引发神经干细胞功能异常

  在健康的成年人中,组织特异性的干细胞能够补充损伤的组织并维持器官的可塑性。在大多数哺乳动物成年大脑的两个区域中(侧脑室脑室下区和海马体的齿状回),神经干细胞能够产生新的神经元从而促进大脑的可塑性及认知能力;然而目前关于成年人类大脑中通常是否会产生新的神经元仍然存在一定的争议,哺乳动物大脑中神经干

无标记活细胞动态分析技术在神经生物学方面的应用 一

还原最真实的细胞变化 - 无标记分析,神经生物学研究的新利器 神经生物学是生物学中研究神经系统的解剖、生理和病理方面内容的一个分支。神经科学寻求解释神智活动的生物学机制,即细胞生物学和分子生物学机制。近年来神经干细胞逐渐成为神经生物学中的一大研究热点。神经干细胞是一群能自我修复和具有多种分化潜能的细

再生大脑的关键:lunatic fringe基因

  “我们的最初目标是寻找原代神经干细胞选择性表达的基因。依靠向公众开放的表达数据库,我们粗略筛选了750个潜在候选基因。经过艰苦细致的工作,系统地将目标锁定至一个单基因,”德克萨斯儿童医院儿科和神经科助理教授Mirjana Mirjana Maletić-Savatić说。“经过广泛的分析,我们确

PLoS ONE:利用外来体来拦截细胞交流

  利用干细胞的再生医学疗法是治疗多种损伤非常有前途的方法,移植的干细胞可以分化成为任何类型的机体细胞,包括神经元细胞等,神经元则可以同已分隔开的骨髓进行重新连接来修复机体瘫痪。  有研究证明多种类型的因子可以有效诱导移植的干细胞分化成为神经元,而近日刊登在国际杂志PLOS ONE上的一项研究中,塔

BioGems小分子在神经科学研究的选择与应用

小分子就是分子量很小的化合物,通常是指分子量小于1000道尔顿(尤其小于400道尔顿),因其可以自由通过细胞膜而广泛应用于细胞信号通路的研究。对小分子进行以细胞为基础的表型和通路特异性筛选,为我们调控和研究复杂的细胞分化过程提供了有用的化学工具,随着神经生物学的迅速发展,神经干细胞定向诱导分化调控是

Nanomedicine:健康所发现纳米材料可调节多巴胺神经元分化

  近日,国际学术期刊《Nanomedicine》在线发表了健康科学研究所乐卫东研究组题为“Graphene oxide promotes the differentiation of mouse embryonic stem cells to dopamine neurons”的研究论文,

细胞团和离体大脑是否可能有意识?

  在Alysson Muotri的实验室里,数百个芝麻大小的微型人脑漂浮在培养皿中,闪烁着电活动的火花。  这些微小的结构被称为大脑类器官(brain organoid),是利用人体干细胞培养出来的,已经成为许多实验室研究大脑特性的常见工具。作为加州大学圣迭戈分校的一名神经科学家,Muotri已经

赖良学课题组JBC发表细胞转分化研究新突破

  来自中科院广州生物医药与健康研究院的研究人员,成功地将人类成纤维细胞直接转分化成为了神经元限制性前体细胞(Neuronal Restricted Progenitor,NRP),这一研究成果在线发表在2014年1月2日的《生物化学杂志》(JBC)上。   领导这一研究的是广州生物医药与健康

我科学家发现灵长类脑内新生神经细胞特征及迁移规律

  复旦大学脑科学研究院、复旦大学医学神经生物学国家重点实验室杨振纲教授带领博士研究生经过3年多艰苦工作,发现成年猕猴和人类大脑中存有神经干细胞和新生的神经元,并首次详细描述了由神经干细胞生成的新生神经元的特征及迁移路线。该成果为人类脑损伤后神经再生带来新的希望,相关系列论文近日陆续发表在国际主流学