超临界二氧化碳萃取的特点

(1)可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着药用植物的全部成分,而且能把高沸点,低挥发度、易热解的物质在其沸点温度以下萃取出来;(2)使用SFE是最干净的提取方法,由于全过程不用有机溶剂,因此萃取物绝无残留溶媒,同时也防止了提取过程对人体的毒害和对环境的污染,是100%的纯天然;(3)萃取和分离合二为一,当饱含溶解物的CO2-SCF流经分离器时,由于压力下降使得CO2与萃取物迅速成为两相(气液分离)而立即分开,不仅萃取效率高而且能耗较少,节约成本;(4)CO2是一种不活泼的气体,萃取过程不发生化学反应,且属于不燃性气体,无味、无臭、无毒,故安全性好;(5)CO2价格便宜,纯度高,容易取得,且在生产过程中循环使用,从而降低成本;(6)压力和温度都可以成为调节萃取过程的参数。通过改变温度或压力达到萃取目的。压力固定,改变温度可将物质分离;反之温度固定,降低......阅读全文

超临界二氧化碳流体的特点

超临界二氧化碳流体的特点:1、二氧化碳的临界温度是31.3℃,接近于室温,临界压强是7.37MPa,临界条件易于实现,整个萃取分离过程可以在接近室温的条件下完成。2、二氧化碳临界密度是448kg/m³,是常用超临界萃取剂中最高的。3、在超临界状态下,二氧化碳的渗透力强,具有良好的流动性,溶质的传递速

超临界萃取和亚临界萃取的区别

超临界CO2流体萃取的原理是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。亚临界萃

超临界萃取和亚临界萃取的区别

超临界CO2流体萃取的原理是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。亚临界萃

超临界萃取的相关介绍

  超临界萃取(Supercritical Fluid Extraction)是一种以超临界流体作为萃取溶剂的分离提纯技术,利用了超临界流体的溶解能力取决于萃取压力和温度的特性。  超临界萃取包括萃取和分离两个过程,能够防止热敏性物质的氧化和逸散,且具有工艺简单、洁净环保、萃取速度快等优点,被广泛应

药用精油的超临界萃取

本文描述了超临界流体技术在精油提取中的应用,未来化学科技有限公司为对此领域感兴趣的研究人员提供一些精油超临界萃取的实验数据,以供参考: Plant TargetsGas Conditions  Allium cepa (onion)Onion oleoresin; sulphur content;f

超临界萃取的技术应用

  超临界CO2萃取的特点决定了其应用范围十分广阔。如在医药工业中,可用于中草药有效成份的提取,热敏性生物制品药物的精制,及脂质类混合物的分离;在食品工业中,啤酒花的提取, 色素的提取等;在 香料工业中,天然及合成香料的精制;化学工业中混合物的分离等。具体应用可以分为以下几个方面:  1、从药用植物

超临界萃取的技术原理

  超临界CO2流体萃取(SFE)分离过程的原理是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单

超临界萃取的技术应用

  超临界CO2萃取的特点决定了其应用范围十分广阔。如在医药工业中,可用于中草药有效成份的提取,热敏性生物制品药物的精制,及脂质类混合物的分离;在食品工业中,啤酒花的提取,色素的提取等;在香料工业中,天然及合成香料的精制;化学工业中混合物的分离等。具体应用可以分为以下几个方面:  1、从药用植物中萃

超临界萃取方法的优点

用超临界萃取方法提取天然产物时,一般用CO2作萃取剂。这是因为:a) 临界温度和临界压力低(Tc=31.1℃,Pc=7.38MPa),操作条件温和,对有效成分的破坏少,因此特别适合于处理高沸点热敏性物质,如香精、香料、油脂、维生素等;b)CO2可看作是与水相似的无毒、廉价的有机溶剂;c)CO2在使用

超临界流体萃取的优点

用超临界萃取方法提取天然产物时,一般用CO2作萃取剂。这是因为:a) 临界温度和临界压力低(Tc=31.1℃,Pc=7.38MPa),操作条件温和,对有效成分的破坏少,因此特别适合于处理高沸点热敏性物质,如香精、香料、油脂、维生素等;b)CO2可看作是与水相似的无毒、廉价的有机溶剂;c)CO2在使用

超临界萃取的技术原理

  利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然

茶多酚的超临界流体萃取

  超临界流体萃取(SFE)是一种的新型分离技术,它是利用温度和压力略超过或靠近临界温度和临界压力介于气体和液体之间的流体作为萃取剂,从固体或液体中萃取某种高沸点和热敏性成分、以达到分离和提纯的目的。由于其介质通常为无毒的二氧化碳,对产品没有毒,特别适合于医药、食品添加剂等产品的提取。与一般的萃取分

超临界萃取技术的应用

1978年德国建成第一套萃取咖啡因的工业装置以来,超临界萃取技术受到人们广泛关注。目前,超临界萃取技术逐渐应用到食品、医药、香料和化工等领域。萃取过程主要采用超临界二氧化碳作为萃取溶剂,超临界二氧化碳溶解能力强、萃取能力高,分离工艺简单,且二氧化碳低廉、无毒、惰性、无残留,最具应用前景。目前广泛应用

超临界流体萃取设备

超临界流体萃取设备(more)

超临界萃取装置概述

一、概述: 超临界萃取技术是现代化工分离中出现的学科,是目前国际上兴起的一种分离工艺。所谓超临界流体是指热力学状态处于临界点(Pc、Tc)之上的流体,临界点是气、液界面刚刚消失的状态点,超临界流体具有十分独特的物理化学性质,它的密度接近于液体,粘度接近于气体,而扩散系数大、粘度小、介电常数大等特点,

超临界流体萃取原理

超临界流体萃取分离过程的原理是超临界流体对脂肪酸、植物碱、醚类、酮类、甘油酯等具有特殊溶解作用,利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来

什么叫超临界萃取

超临界流体萃取过程是利用处于临界低压和临界温度以上的流体具有特异增加的溶解能力而发展出来的化工分离新技术,人们发现处于临界压力和临界温度以上的流体对有机化合物溶解增加的现象是非常惊人的。一般能增加几个数量级,在适当条件下甚至可达到按蒸气压计算所得浓度的1010倍(油酸在超临界乙烯中的溶解度)但是应用

超临界流体萃取介绍

超临界流体萃取超临界流体(SCF)温度和压力均高于临界点的流体,本身特性为:1.其扩散系数比气体小,但比液体高一个数量级;2.黏度接近气体;3.密度类似液体,压力的细微变化可导致其密度的显著变动;4.压力或温度的改变可导致相变。基本原理在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依

超临界流体,超临界CO2萃取的原理影响其萃取的因数

定义: 超临界为超临界流体,是介于气液之间的一种既非气态又非液态的物态,这种物质只能在其温度和压力超过临界点时才能存在。超临界流体的密度较大,与液体相仿,而它的粘度又较接近于气体。因此超临界流体是一种十分理想的萃取剂。 原理: 超临界流体的溶剂强度取决于萃取的温度和压力。利用这种特性,只需改变萃取剂

CO2超临界流体萃取的特点是什么?

  ①不残留有机溶剂、萃取速度快、收率高、工艺流程简单、操作方便;  ②无传统溶剂法提取的易燃易爆的危险,减少环境污染,无公害,产品是纯天然的;  ③因萃取温度低,适用于对热不稳定物质的提取;  ④萃取介质的溶解特性容易改变,在一定温度下只需改变其压力;  ⑤还可加入夹带剂,改变萃取介质的极性来提取

超临界二氧化碳萃取设备使用规章制度

一、本实验室超临界CO2萃取设备由专人保管、专人负责,任何人未经责任人允许,不准擅自开机使用。二、负责管理设备的责任人,有义务承担实验教学和为其他教师提供科研服务。三、若利用实验室场地或仪器设备进行非教学实验活动,应具备书面报告,经中心主任批准后方可施行,不得擅自安排。四、设备责任人有权拒绝不遵守操

超临界流体萃取技术的萃取装置的介绍

  超临界萃取装置可以分为两种类型,一是研究 分析型,主要应用于小量物质的分析,或为生产提供数据。二是制备生产型,主要是应用于批量或 大量生产。  超临界萃取装置从功能上大体可分为八部分: 萃取剂供应系统,低温系统、高压系统、萃取系统、分离系统、 改性剂供应系统、 循环系统和 计算机控制系统。具体包

超临界流体、超临界CO2萃取的原理

定义: 超临界为超临界流体,是介于气液之间的一种既非气态又非液态的物态,这种物质只能在其温度和压力超过临界点时才能存在。超临界流体的密度较大,与液体相仿,而它的粘度又较接近于气体。因此超临界流体是一种十分理想的萃取剂。 原理: 超临界流体的溶剂强度取决于萃取的温度和压力。利用这种特性,只需改变萃取剂

超临界二氧化碳萃取法提取叶黄素的方法介绍

超临界CO2萃取技术的重点是一种从动植物中提取活性物质的方法,该方法主要是对超临界流体性质的运用,在高压力和固体混合物的分离或接触下,对操作系统的温度及压力进行调节,对所需物质进行提取。很多天然产物的超临界CO2萃取法规模已经扩大,从试验规模扩大到工业化生产规模。超临界CO2萃取方法具有许多优点,如

超临界二氧化碳萃取法提取番茄红素的介绍

  原理:物质在较高的压力下,液相和气相差别缩小,达到某一温度与压力时,差别消失合并成一相,此状态成为临界点,此时的温度和压力分别称为临界温度和临界压力,当温度和压力超过临界点时,其流体的性质介于液体和气体之间,称为超临界流体。  超临界流体具有气液两重性的特点,既有与气体相当的高渗透能力和低的粘度

超临界二氧化碳萃取的藻油DHA更安全吗?

藻油DHA和一般的DHA的较量!DHA,俗称脑黄金, 人体内的DHA主要分布于大脑细胞和视网膜。婴幼儿及儿童持续足量补充DHA,智商指数明显增加,思维反应能力更快,语言发育提前,动作更敏捷,眼睛乌黑明亮,还会减少弱视和近视发生.DHA的三个主要来源:1、海鱼2、海洋海藻3、微藻海鱼提取DHA:海鱼中

实验室分析仪器有机质谱分析仪样品超临界流体萃取

超临界流体萃取( supercritical fluid extraction,SFE)技术就是利用超临界流体为溶剂,从固体或液体中萃取出某些有效组分,并进行分离的一种技术。超临界流体萃取法的特点在于充分利用超临界流体兼有气、液两重性的特点,在临界点附近,超临界流体对组分的溶解能力随体系的压力和温度

超临界萃取的技术原理简介

  超临界CO2流体萃取(SFE)分离过程的原理是利用 超临界流体的 溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在 超临界状态下,将 超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不

超临界流体萃取的影响因素

  对于极性较大的溶质,在超临界CO2中溶解较差,SFE很难萃取出来,但若加入一定的夹带剂,以改变溶剂的活性,在一定条件下,就可以萃取出来,而且萃取条件会更低,萃取率更高。常用的夹带剂有甲醇、氯仿等。夹带剂的种类可根据萃取组分的性质来选择,加入的量一般通过实验来确定。应用自Hanay和Hogarth

超临界流体萃取的新技术

  长期以来,对超临界流体萃取技术的产业化,主要是单纯超临界CO2的间隙式萃取,处理的物料也多以固体植物为主,得到的几乎都是粗提混合物。为了得到高纯度的产品,德国、日本、澳大利亚、 意大利等国用于精制天然维生素-E、精油脱萜、提取高纯的不饱和脂肪酸等; 法国用于从啤酒及葡萄酒中分离乙醇制备无醇啤酒及