镓是什么化学物质

氢氧化镓是化学物质,分子式是Ga(OH)₃。中文名氢氧化镓外文名galliumhydroxide化学式Ga(OH)₃分子量120.74502CAS登录号12023-99-3目录1简介2性质3用途简介编辑语音gallium hydroxide分子式: Ga(OH)3性质编辑语音白色胶状物。两性氢氧化物,酸性强于碱性。难溶于水,易溶于碱金属氢氧化物和稀无机酸。能与酒石酸络合。加热170℃以上生成羟基氧化镓GaO(OH)。400℃以上完全脱水,生成三氧化二镓。可由镓(III)盐溶液与氨水反应,控制PH值为3.2时能得到氢氧化镓沉淀,再经干燥制得。用途编辑语音用于制备金属镓及各种镓盐。词条图册更多图册......阅读全文

液相法氮化镓晶体生长研究

GaN是一种宽带隙半导体材料,具有高击穿电压、高的饱和电子漂移速度、优异的结构稳定性和机械性能,在高频、高功率和高温等应用领域具有独特的优势。在光电子和功率器件中具有广阔的应用前景。在液相生长技术中,助溶剂法和氨热法是生长高质量GaN的有效方法,该论文全面总结了这两种方法生长GaN的研究进展,详细分

氧化镓半导体器件领域研究取得重要进展

原文地址:http://news.sciencenet.cn/htmlnews/2022/12/491041.shtm 科技日报合肥12月12日电 (记者吴长锋)12日,记者从中国科学技术大学获悉,日前在美国旧金山召开的第68届国际电子器件大会(IEEE IEDM)上,中国科大国家示范性微电子学

枸橼酸镓[67Ga]注射液

性状本品为无色澄明液体。鉴别(1)取本品适量,照γ谱仪法(通则1401)测定,其主要光子的能量为0.093MeV、0.185MeV和0.300MeV;或照半衰期测定法(通则1401)测定,本品的半衰期应符合规定(74.4~82.2小时)(2)在放射化学纯度项下的色谱图中,R(值约为0.9处有放射性主

氧化镓半导体器件领域研究取得重要进展

  12日,记者从中国科学技术大学获悉,日前在美国旧金山召开的第68届国际电子器件大会(IEEE IEDM)上,中国科大国家示范性微电子学院龙世兵教授课题组两篇关于氧化镓器件的研究论文(高功率氧化镓肖特基二极管和氧化镓光电探测器)被大会接收。  IEEE IEDM是一个年度微电子和纳电子学术会议,是

什么是砷化镓太阳能电池?

单晶硅是制造太阳能电池的理想材料,但是由于其制取工艺相对复杂,耗能大,仍然需要其他更加廉价的材料来取代。为了寻找单晶硅电池的替代品,人们除开发了多晶硅,非晶硅薄膜太阳能电池外,又不断研制其它材料的太阳能电池。其中主要包括砷化镓III-V族化合物,硫化镉,碲化镉及铜锢硒薄膜电池等。

砷化镓太阳能电池性能详解

砷化镓太阳能电池  GaAs属于III-V族化合物半导体材料,其能隙为1.4eV,正好为高吸收率太阳光的值,与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳电池。  砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需

氮化镓半导体材料光电器件应用介绍

GaN材料系列是一种理想的短波长发光器件材料,GaN及其合金的带隙覆盖了从红色到紫外的光谱范围。自从1991年日本研制出同质结GaN蓝色 LED之后,InGaN/AlGaN双异质结超亮度蓝色LED、InGaN单量子阱GaNLED相继问世。目前,Zcd和6cd单量子阱GaN蓝色和绿色 LED已进入大批

氮化镓半导体材料新型电子器件应用

GaN材料系列具有低的热产生率和高的击穿电场,是研制高温大功率电子器件和高频微波器件的重要材料。目前,随着 MBE技术在GaN材料应用中的进展和关键薄膜生长技术的突破,成功地生长出了GaN多种异质结构。用GaN材料制备出了金属场效应晶体管(MESFET)、异质结场效应晶体管(HFET)、调制掺杂场效

氮化镓是实现-5G-的关键技术

  日前,与 SEMICON CHINA 2020 同期的功率及化合物半导体国际论坛 2020 在上海隆重举行,Qorvo FAE 经理荀颖也在论坛上发表了题为《实现 5G 的关键技术—— GaN》的演讲。  

氧化镓和碳化硅功率芯片的技术差异

SiC(碳化硅)商业化已经20 多年了,GaN 商业化还不到5 年时间。因此人们对GaN 未来完整的市场布局并不是很清楚。SiC 的材料特性是能够耐高压、耐热,但是缺点是频率不能高,所以只能做到效率提升,不能做到器件很小。现在很多要做得很小,要控制成本。而GaN 擅长高频,效率可以做得非常好。例如,

固体所在颗粒尺寸导致镓相变研究方面取得进展

  随着纳米材料研究的不断深入,越来越多的实验结果表明,材料的尺寸对相结构有着重要影响。当晶粒的尺寸小到纳米尺度时,它们会呈现出与块体材料不同的晶体结构。这使得人们不得不改变对相图的传统观念,即相图不只与温度、压强、成份有关,还与材料的尺度有关。   以镓为例,前期研究发现:(1)当

备受看好的氧化镓材料是什么来头?-(一)

日前,据日本媒体报道,日本经济产业省(METI)计划为致力于开发新一代低能耗半导体材料“氧化镓”的私营企业和大学提供财政支持。报道指出,METI将为明年留出大约2030万美元的资金去资助相关企业,预计未来5年的资助规模将超过8560万美元。   众所周知,经历了日美“广场协定”的日本

氮化镓半导体材料的反应方程式

GaN材料的生长是在高温下,通过TMGa分解出的Ga与NH3的化学反应实现的,其可逆的反应方程式为:Ga+NH3=GaN+3/2H2生长GaN需要一定的生长温度,且需要一定的NH3分压。人们通常采用的方法有常规MOCVD(包括APMOCVD、LPMOCVD)、等离子体增强MOCVD(PE—MOCVD

备受看好的氧化镓材料是什么来头?-(二)

行业的领先厂商   既然这个材料拥有这么领先的性能,自然在全球也有不少的公司投入其中。首先看日本方面,据半导体行业观察了解,京都大学投资的Flosfia、NICT和田村制作所投资的Novel Crystal是最领先的Ga2O3供应商。   相关资料显示,Flosfia成立于20

工业化砷化镓的生产工艺介绍

工业化砷化镓生长工艺包括:直拉法(Cz法)、水平布里其曼法(HB)、垂直布里其曼法(VB法)以及垂直梯度凝固法(VGF法)等。以上方法各有优劣,除了实际工艺制备的方法,另外一种就是通过计算机来实现砷化镓的晶体生长数值模拟,如利用FEMAG/VB能模拟VB、VGF法生长工艺,利用FEMAG/Cz能模拟

美开发出迄今最小砷化铟镓晶体管

  硅半导体作为微芯片之王的日子已经屈指可数了,据物理学家组织网近日报道,美国麻省理工学院科学家开发出了有史以来最小的砷化铟镓晶体管。该校微系统技术实验室科研团队开发的这个复合晶体管,长度仅为22纳米。研究团队近日在旧金山举行的国际电子设备会议上介绍了该项研究成果。   麻省理工学院电气工程和计算

高性能氮化镓晶体管研制成功

  据美国物理学家组织网9月22日(北京时间)报道,法国和瑞士科学家首次使用氮化镓在(100)-硅(晶体取向为100)基座上,成功制造出了性能优异的高电子迁徙率晶体管(HEMTs)。此前,氮化镓只能用于(111)-硅上,而目前广泛使用的由硅制成的互补性金属氧化半导体(CMOS)芯片一般

我国学者在非晶氧化镓导热领域取得进展

图 非晶氧化镓的密度、组分比及结构描述器SSF与热导率之间的关系  在国家自然科学基金项目(批准号:51825601、U20A20301)资助下,清华大学曹炳阳教授团队及合作者在非晶氧化镓导热领域取得进展。研究成果以“结合机器学习与实验揭示非晶氧化镓原子结构与热输运性质的相关性(Unraveling

铜铟镓硒薄膜太阳电池的技术特点

铜铟镓硒薄膜太阳电池的特点铜铟镓硒薄膜太阳电池具有生产成本低、污染小、不衰退、弱光性能好等特点,光电转换效率居各种薄膜太阳能电池之首,接近晶体硅太阳电池,而成本则是晶体硅电池的三分之一,被国际上称为“下一时代非常有前途的新型薄膜太阳电池”。此外,铜铟镓硒薄膜太阳电池具有柔和、均匀的黑色外观,是对外观

挪威研制最新半导体新材料砷化镓纳米线

  挪威科技大学的研究人员近日成功开发出一种新型半导体工业复合材料“砷化镓纳米线”,并申请了技术ZL,该复合材料基于石墨烯,具有优异的光电性能,在未来半导体产品市场上将极具竞争性,这种新材料被认作有望改变半导体工业新型设备系统的基础。该项技术成果刊登在美国科学杂志纳米快报上。   以Helge W

微电子所在氮化镓界面态研究方面取得进展

  近日,中国科学院微电子研究所高频高压中心研究员刘新宇团队等在GaN界面态研究领域取得进展,在LPCVD-SiNx/GaN界面获得原子级平整界面和国际先进水平的界面态特性,提出了适用于较宽能量范围的界面态U型分布函数,实现了离散能级与界面态的分离。  增强型氮化镓MIS-HEMT是目前尚未成功商用

煤中镓和铀的ICPMS测定方法研究

  煤炭是我国的主要能源,煤中还有多种微量元素,有些在煤的利用和转化过程中起催化剂作用,有些则具有毒性[1-2]。煤中的镓、铀采用国标或者行标规定的分光光度法测定。但这些国标或者行标方法实验过程都比较繁琐、复杂,且每个元素需分别独立测定。近年来电感耦合等离子体发射光谱法(ICP-AES)和X射线荧光

关于对镓、锗相关物项实施出口管制的公告

  据商务部网站消息,根据《中华人民共和国出口管制法》《中华人民共和国对外贸易法》《中华人民共和国海关法》有关规定,为维护国家安全和利益,经国务院批准,决定对镓、锗相关物项实施出口管制。有关事项公告如下:  一、满足以下特性的物项,未经许可,不得出口:  (一)镓相关物项。  1.金属镓(单质)(参

砷化镓太阳能电池有望打破能效记录

  据美国物理学家组织网11月8日(北京时间)报道,美国科学家通过与传统科学研究相反的新思路,用砷化镓制造出了最高转化效率达28.4%的薄膜太阳能电池。该太阳能电池效率提升的关键并非是让其吸收更多光子而是让其释放出更多光子,未来用砷化镓制造的太阳能电池有望突破能效转化记录的极限。  

苏州纳米所在新型氮化镓基光电器件领域取得进展

  近年来,大数据、互联网和人工智能的快速发展,对数据处理的速度和效率提出了更高的要求。人类大脑是最复杂的计算系统之一,可以通过密集协调的突触和神经元网络同时存储、整合和处理大量的数据信息,兼具高速和低功耗的优势。受人脑的启发,人工突触器件应运而生。人工突触器件因具有同时处理和记忆数据的能力而备受关

学者突破锗68/镓68发生器制备技术

近日,中国科学院近代物理研究所秦芝研究员团队自主研发了锗-68的分离纯化工艺和锗-68/镓-68发生器制备技术,相关成果发表在Applied Radiation and Isotopes上。 正电子发射型计算机断层显像(PET)是核医学临床领域先进的显像技术之一。当前,放射性核素氟-18已经广泛

铜铟镓硒太阳能电池板的应用

铜铟镓硒薄膜太阳电池光电转换效率居各种薄膜太阳能电池之首,接近晶体硅太阳电池,而成本则是晶体硅电池的三分之一,被国际上称为“下一时代非常有前途的新型薄膜太阳电池”。此外,该电池具有柔和、均匀的黑色外观,是对外观有较高要求场所的理想选择,如大型建筑物的玻璃幕墙等,在现代化高层建筑等领域有很大市场。

超纯砷化镓电子态遵守量子力学法则

  据美国每日科学网站7月27日报道,美国科学家成功制造出了超纯的砷化镓,并让其呈现出某种特殊的状态,在这种状态下,电子不再遵守单粒子的物理学法则而被它们之间的相互作用(由量子力学法则来解释)所掌控,这种超纯材料和状态都有望用于高速量子计算机的研究中。   量子计算机使用电子的量子力

枸橼酸镓[67Ga]注射液的检查方法

pH值应为6.0~7.5(通则1401)细菌内毒素取本品,以内毒素检查用水至少稀释100倍后,依法检查(通则1143),本品每1ml中含内毒素的量应小于15EU。无菌取本品,依法检查(通则1101),应符合规定。