Antpedia LOGO WIKI资讯

美科学家发现核糖体原子结构促抗生素研究的新发展

美国加利福尼亚州劳伦斯伯克利国家实验室的研究人员近日首次从原子级别发现细胞核糖体的结构,为开发出更完善的抗生机制迈出新的一步。 细胞核糖体的分子结构从图像上看如同一团弯弯曲曲的曲线线团,它的作用是将DNA序列转化为蛋白质——维持生物所有生命活动的重要化合物。同时,这一图像可以作为寻求更高级抗生机制的路标图。因为研究人员发现,如果将其看作是细菌体内的核糖体,其迂回曲折的部分就是细菌体的弱点所在,可以通过抗生素对其进行攻击。 “我们一直与细菌耐药性进行着军备竞赛,”劳伦斯伯克利国家实验室生物科学研究员、加州大学伯克利分校生物结构教授杰米凯特表示,“我们对细菌核糖体的工作机能认识的越深入,就越能研发出破坏它的新方法。” 杰米凯特及其研究人员将这一发现发表在最新一期《科学》期刊上。这一图像是寻求更有效抗生素道路中的又一次重要的进步,其目的是研发出新的药物杀死致病细菌,留下人体内的有益细菌。要达到这一目的,就需要对细......阅读全文

核糖体—生命化学工厂中的工程师

  09诺贝尔化学奖成果解读:核糖体,生命化学工厂中的工程师   10月7日,瑞典皇家科学院在斯德哥尔摩宣布,英国剑桥大学科学家文卡特拉曼·拉马克里希南(左)、美国科学家托马斯·施泰茨(中)和以色列科学家阿达·约纳特因“对核糖体结构和功能的研究”而共同获得2009年诺贝尔化学奖。这是瑞典皇家科

2017年5月Cell期刊不得不看的亮点研究

  5月份即将结束了,5月份Cell期刊又有哪些亮点研究值得学习呢?小编对此进行了整理,与各位分享。  1.Cell:皮肤中的调节性T细胞促进毛发再生  doi:10.1016/j.cell.2017.05.002  在一项新的研究中,来自美国加州大学旧金山分校的研究人员通过开展小鼠实验发现作为一类

改写抗生素历史|科学家发现针对革兰氏阴性细菌抗生素

  对于耐药革兰氏阴性病原体,目前对新型抗生素的需求尤为迫切。革兰氏阴性菌具有高度限制性的通透性屏障,这限制了大多数化合物的渗透。结果,在1960年代开发了针对革兰氏阴性细菌的最后一类抗生素。  2019年11月20日,美国东北大学Kim Lewis团队在Nature 在线发表题为“A new an

九问新冠病毒:比SARS狡猾哪儿?抗生素为啥不管用?

  这个春节,一场始料未及的新冠肺炎疫情,打乱了人们对于鼠年的憧憬,不断滚动的疫情播报牵动着每个人的心。  在这场战“疫”中,中华预防医学会感染性疾病防控分会常务委员兼秘书长、中山大学附属三院感染科副主任林炳亮除了参与医务工作,还不断通过互联网做科普。他向中青报·中青网记者透露,这些天面对的线上咨询

如何阅读基因载体图谱

  基因载体是基因工程的核心,也是基因治疗中强有力的生物工具,我们先来认识和阅读载体图谱吧。   一、载体分类及载体组成元件   载体分类   1、按属性分类:病毒载体和非病毒载体   病毒载体是一种常见的分子生物学工具,可将遗传物质带入细胞,原理是利用病毒具有传送其基因组进入目的细

如何阅读基因载体图谱

  基因载体是基因工程的核心,也是基因治疗中强有力的生物工具,我们先来认识和阅读载体图谱吧。   一、载体分类及载体组成元件   载体分类   1、按属性分类:病毒载体和非病毒载体   病毒载体是一种常见的分子生物学工具,可将遗传物质带入细胞,原理是利用病毒具有传送其基因组进入目

Cell子刊:揭秘细菌的耐受基因

  科学家们发现,细菌的一个基因能够关闭自身的蛋白合成进入休眠状态,以便逃过抗生素的攻击。文章发表在Cell旗下的Molecular Cell杂志上。   上世纪四十年代人们发现,一群细菌中总有那么一两个,能够在抗生素的攻击下生存下来,这一现象被称为细菌的耐药性。细菌耐药性依赖于细胞的休眠,这

巨型酶类的3D图像或可帮助改善新型抗生素的开发

  获得巨型酶(megaenzymes)清晰的图像并不容易,但却非常有价值,这些蛋白在开发新型抗生素上扮演着重要的角色,近日一项刊登在国际杂志Nature上的研究论文中,来自麦基尔大学的研究人员通过研究获得了来自药物合成酶部分结构的一系列3D图像,研究者认为,这些图像的产生不仅可以帮其理解抗生素的制

科学家发现细菌基因表达常规机理

     美国纽约大学兰贡(Langone)医学中心的科学家发现和阐述了细菌体内控制转录延伸(transcription  elongation)的常规机理。在4月23日出版的《科学》杂志上,他们表示,该机理依赖游离核糖体和核糖核酸聚合酶(

科学家发现细菌基因表达常规机理

  美国纽约大学兰贡(Langone)医学中心的科学家发现和阐述了细菌体内控制转录延伸(transcription elongation)的常规机理。在4月23日出版的《科学》杂志上,他们表示,该机理依赖游离核糖体和核糖核酸聚合酶(RNAP)之间的协同作用,因为这种协同作用使得转录率对应于

最新精彩研究!2019年11月8日Science期刊精华

  本周又有一期新的Science期刊(2019年11月8日)发布,它有哪些精彩研究呢?让小编一一道来。  图片来自Science期刊。  1.Science:揭示非核糖体肽合成酶三维结构,有助深入认识抗生素合成  doi:10.1126/science.aaw4388  在一项新的研究中,来自加拿

Sci trans med:新一代抗生素成功抵抗耐药菌

  基于结构对早期使用的抗生素奇霉素进行化学修饰,科学家们研发出了新一代奇霉素抗生素。第二代奇霉素能抑制对各种抗生素耐受的肺炎链球菌的生长,并对导致呼吸道疾病的嗜血杆菌和卡塔莫拉菌的抗菌能力增强,对军团杆菌和性传播的淋球菌和衣原体的抗菌能力也有所增强。  细菌的耐药性问题越来越严重,正常剂量的药物无

冷冻电镜的发展

  细胞里面的生命活动井然有序,每一个部分都有其特定的结构,承担不同的功能。生物大分子则是一切生命活动的最终执行者,它们主要是核酸和蛋白。核酸携带了生命体的遗传信息,而蛋白是生命活动的主要执行者。自现代分子生物学诞生以来的半个世纪里,解析和分析生物大分子的结构、进而阐释其功能机制一直都是现代生命科学

“无害”食品添加剂或“无意”导致流行病出现

  英国《自然》杂志近日发表的一篇微生物学论文报告称,美国科学家通过全基因组测序和对比后认为,艰难梭菌(Clostridium difficile)的高毒菌株获得了代谢海藻糖的机制,而这种能力与疾病相关联。数据显示,很可能正是一种广泛使用的食品添加剂,“无意”中导致了这些流行菌株的出现。  艰难梭菌

Science新发现:致病菌的“阿基里斯之踵”

  多药耐药菌仍然是全球医院和疗养院关注的一个重要问题。当前细菌耐药性的传播令人感到震惊,寻找新抗菌剂正变得日益迫切。现在来自德国马克斯•普朗克生物物理化学研究所的科学家们鉴别了一个对抗细菌的潜在新靶点:EF-P因子。EF-P对生成肠出血性大肠杆菌(EHEC)或沙门氏菌毒力必需的蛋白质起至关重要的作

“无害”食品添加剂或“无意”导致流行病出现

  英国《自然》杂志近日发表的一篇微生物学论文报告称,美国科学家通过全基因组测序和对比后认为,艰难梭菌(Clostridium difficile)的高毒菌株获得了代谢海藻糖的机制,而这种能力与疾病相关联。数据显示,很可能正是一种广泛使用的食品添加剂,“无意”中导致了这些流行菌株的出现。  艰难梭菌

支原体的性状特点以及标本的采集

支原体(mycoplasma):又称霉形体,为目前发现的最小的最简单的原核生物。支原体细胞中唯一可见的细胞器是核糖体(支原体是原核细胞,原核细胞的细胞器只有核糖体)。支原体是在1898年发现的,是一种简单的原核生物。其大小介于细菌和病毒之间。支原体结构也比较简单,多数成球形,没有细胞壁,只有三层结构

你可能提过很多质粒 却不一定知道这些

经常提质粒吗?熟练之后,提质粒乃至质粒构建都很简单。但如果真问起一些质粒的细节,可能很多人回答不了。不信随我看看。 质粒组成要素 一个合格的质粒含有以下组成部分: 复制起始位点 Ori 即控制复制起始的位点。原核生物 DNA 分子中只有一个复制起始点。而真核生物 DNA 分子有多个复制起始位点。

细菌耐药与临床对策

近年来由于抗生素的广泛应用,细菌的耐药问题越来越严重。历史和现实的教训告诉我们:任何一种抗生素一旦问世,很快就会产生耐药株,产生耐药株的时间周期短则几年,长则十几年(表1)。目前,细菌的耐药问题已成为全球的严重问题,为此WHO专门发表了针对细菌耐药问题的专家建议(WHO/CDS/CSR/DRS/20

三位著名华人科学家联手合作 Nature发布首发性成果

  瞬时感受器电位(TRP)离子通道 NOMPC 最初是在研究人员对共济失调和感觉迟钝的果蝇幼虫进行遗传筛查的过程中鉴别出来的,它是第一个明确与机械力传导有关联的TRP通道。近期来自加州大学旧金山分校的研究人员发表了最新成果,利用单粒子电子冷冻显微镜解析了果蝇NOMPC的原初原子结构。这一结构表明,

多肽抗生素研究进展(一)

摘要 多肽抗生素是生物界中广泛存在的一类生物活性小肽,一般具有抗细菌或真菌的作用,有些还具有抗原虫、病毒或癌细胞的功能。按照化学结构的不同,多肽抗生素可分为5类:①具有螺旋结构的线性多肽;②富含某种氨基酸的线性多肽;③含有一个二硫键的多肽;④含有两个或两个以上二硫键的多肽;⑤羊毛硫抗生素。根据作用机

多肽抗生素研究进展(二)

β-defensins比α-defensins大一些,一般含有38~42个氨基酸残基。都含有3个二硫键和4~8个精氨酸。昆虫defensins在C末端与α-defensins相似,但是只有两个β片层结构,中间有一段α螺旋起稳定作用。主要对革兰阳性菌起作用,而对真菌没有作用。植物defensins一般

Nature子刊:成功合成人造核糖体

  核糖体是负责蛋白质合成的重要细胞结构,美国西北大学和哈佛大学的研究人员首次通过模拟天然程序,成功在体外合成了有功能的核糖体。文章于六月二十五日发表在Nature旗下的Molecular Systems Biology杂志上。   在体外人工构建核糖体,一直是合成生物学领域的研究热点。在此之

秦燕:核糖体足迹的追寻者

   秦燕从一名关注试管中微观世界的分子学家变成了一个各方面都要关注的生理学家。除了科研以外,养老鼠、作解剖也成了她的“家常便饭”。  近日,记者走进了中国科学院生物物理研究所(以下简称生物物理所)核酸生物学重点实验室蛋白质“翻译工厂”——核糖体的储藏室。这间储藏室约六七平方米,别看它面积

Nat Commun:科学家揭示分子伴侣如何保护核糖体蛋白

  在核糖体这个复杂的蛋白质合成机器上每个组成核糖体的蛋白都有自己的分子伴侣将其指引到正确位置,避免受到损伤。在一项新研究中,研究人员了解到了更多关于核糖体分子伴侣如何发挥作用的信息,发现每个分子伴侣都会以独特的方式与被保护的蛋白结合。研究人员借助X射线晶体成像技术解析了结合分子伴侣的核糖体蛋白的原

诺奖得主阿达:正研究新型抗生素 实验室或落地川大

  一头灰白色的卷发,一袭黑衣,棕色挎包。很难相信,这样一位“邻家奶奶”,就是2009年的诺贝尔化学奖得主阿达·尤纳斯。9月24日,在第二届中国西部海外人才科技合作论坛上,阿达·尤纳斯作了15分钟的主题演讲,内容与她正在研究的精准抗生素有关。   会后,这位化学界“大腕”抽空接受了华西都市报记者的采

最新Nature报道一种全新抗生素平台

  来自哈佛大学的Andrew Myers等人设计了一种可以从简单化学组件中合成新型大环内酯类抗生素的新方法,利用这种方法,他们合成了超过300种新型抗生素候选物,其中几种能有效对抗目前所知的最顽固的耐药性菌株。这一研究成果公布在5月18日的Nature杂志上。  虽然大环内酯类抗生素听上去挺陌生,

Science解析蛋白质合成机制

  在信使RNA (mRNA)翻译为蛋白质的过程中,转移RNA (tRNA)和mRNA必须同步移动通过核糖体的内部通道,否则就会有移码突变风险,生成异常的蛋白质。科学家们已经了解了这一过程背后的一些生物化学机制,证实糖核体具有一些移动的元件,使得它以每秒20次轻微移动的速率让tRNA快速精确地通

Cell新文章:蛋白质的生产线

  来自佛罗里达大学斯克里普斯研究所的科学家们确定了成功生成细胞的基本工作单位――蛋白质的一系列复杂的生化步骤。相关论文发布在7月6日的《细胞》(Cell)杂志上。   该研究阐明了活细胞内大型复杂蛋白质生产机器核糖体的组装。核糖体是许多商业用抗生素的靶点,由于核糖体组装和功能对于细胞生长极其重要

翻译因子EF4给核糖体挂“倒挡”

  中国科学院生物物理所秦燕课题组和清华大学高宁课题组合作,揭示了核糖体在蛋白翻译过程中“倒退”的分子机理,即翻译因子EF4通过释放肽酰tRNA的3’末端催化核糖体的倒退运动。相关成果1月26日凌晨在线发表于《自然—结构与分子生物学》。  核糖体是生命出现前的最后一个必需要素,被生物学家称为地球上所