Nature子刊:科学家解析钙离子通道的调控

Johns Hopkins大学的科学家们,解析了机体中游离钙(存在于骨以外的钙)的调控机制,这一研究可以帮助人们开发新药物,治疗包括帕金森症在内的多种神经学疾病。文章发表在本周的Nature Chemical Biology杂志上。 游离钙离子携带的电信号“对于机体功能非常重要,”文章的资深作者David Yue教授说。那些被称为钙离子通道的大蛋白,是决定钙离子何时进入细胞的看门人。这些位于细胞膜中的通道蛋白,通过开启和关闭对进入细胞的钙离子流进行调控。当适量钙离子进入细胞后,会启动一系列重要的活性,如果这一过程出现问题,就会引发相应疾病。 钙离子通道上结合有两个调节子,分别作为钙离子进入细胞的刹车和加速器。其中钙调蛋白(Calmodulin)阻止钙离子通过,而钙结合蛋白负责加速钙离子的流入。 研究人员对大脑神经细胞膜上的特殊钙离子通道进行研究,分析了钙调蛋白和CaBP4(一种钙结合蛋白)对钙离......阅读全文

DNA结合蛋白测定实验

本实验主要用于检测粗制提取物中序列特异性的DNA结合蛋白。实验方法原理本分析方法是一种简单、快速和极为灵敏的用于检测粗制提取物中序列特异性的DNA结合蛋白的方法。在电泳时,与末端标记的DNA片段特异结合的蛋白质阻滞了片段的迁移,因而产生对应于蛋白-DNA复合物的清晰电泳条带。实验材料质粒DNA试剂、

环状RNA结合功能蛋白

环状RNA作为研究持续火热的明星分子,不同于对其丰富的表达谱研究,环状RNA功能机制研究还仅仅处在起步阶段。环状RNA研究多为miRNA海绵机制,部分circRNA可竞争性结合miRNA,解除miRNA对靶基因的抑制作用,上调靶基因的表达。其实,环状RNA可以通过结合不同种类的功能蛋白,分别在转录前

GTP结合蛋白的分类

G蛋白的种类已多达40余种,大多数存在于细胞膜上,由α、β、γ三个不同亚单位构成,总分子量为100kDa左右。其中β亚单位在多数G蛋白中都非常类似,分子量36kDa左右。γ亚单位分子量在8-11kDa之间。Gα蛋白分为Gs、Gi、Go、Gq、G12、G13等六类。这些不同类型的G蛋白在信号传递过程各

什么是DNA结合蛋白?

中文名DNA结合蛋白外文名DNA binding protein别    名螺旋失稳蛋白形    成解链酶类中的一种类型结合效应DBP与单链DNA的结合作    用该单链DNA结合和识别作用

钙调蛋白的定义

  钙调蛋白(calmodulin, CaM)又称钙调素,是一种普遍存在于各种真核细胞内,并能与钙离子结合的多功能蛋白质。   钙调蛋白参与细胞内多种信号转导途径,并在Ca2+依赖性信号转导途径中起到关键作用,是动态Ca2+传感器,能够响应广泛的Ca2+浓度,并向下游传递信号。  钙调蛋白分子是由

钙调蛋白基本介绍

  Ebashi 等在 1965 年报道了细胞中存在介导钙信号的钙结合蛋白,随后 Cheung 将这一类能结合钙离子的磷酸二酯酶(PDE)激活蛋白命名为“钙调蛋白”(calmodulin,简称 CaM)。 [4]  钙调蛋白是一种广泛存在于真核细胞中,进化上高度保守的一类钙离子受体蛋白。钙调蛋白是由

钙离子通道模块成为治疗2型糖尿病的新途径

  卡罗林斯卡医学院的研究人员发现,胰腺β细胞钙通道中的一个构建块在调节我们的血糖值方面起着重要作用。研究人员在科学杂志“细胞报道”的一篇文章中提出,针对这一基石的治疗可能是一种主要治疗2型糖尿病的新方法。  胰腺中的细胞产生胰岛素激素,胰岛素调节我们体内的血糖水平。在糖尿病中,细胞失去了部分或全部

神经元是如何维持其通信能力的钙离子通道的?

神经系统的运作是基于神经元之间通过被称为突触的连接进行信号交流。当钙离子通过离子通道进入充满了携带分子信息的小囊泡的“活性区”时,细胞之间得以“交谈”。带电的钙离子使小囊泡“融合”到突触前神经元的外膜,将用于交流的化学物质释放到突触后细胞中。在一项新的研究中,麻省理工学院Picower学习和记忆研究

Cell解决离子通道的重要争议

  钠离子通道和钙离子通道是细胞上非常关键的门户,允许钠离子和钙离子进入细胞。许多重要的生命过程都依赖于正确的钠离子和钙离子浓度,例如健康大脑中的信息交流和心脏收缩。日前科学家们发现,细胞的钠离子通道和钙离子通道采用相同的方式,对离子的流入量进行控制。这项发表在Cell杂志上的成果,将有助于人们开发

武大教授高帅团队携手颜宁等在Cell发表新成果

原文地址:http://news.sciencenet.cn/htmlnews/2023/11/512451.shtm新闻网讯(通讯员药轩)时隔一年,2023年11月15日,武汉大学药学院高帅教授、姚霞教授再度在Cell(《细胞》)杂志在线发表药物调控平滑肌/心肌钙离子通道Cav1.2的最新研究成果

JMCA封面:OLED材料与钙钛矿电池完美结合

  有机—无机凭借其理想的带隙、较长的载流子扩散长度、高吸光系数、较小的激子分离能等优点在近些年聚集了众多科研工作者的目光,掀起了在光电领域的研究热潮。根据NREL效率图,目前基于正置高温二氧化钛结构钙钛矿电池的光电转化效率已经突破了22.1%。倒置P-I-N结构平面钙钛矿电池因其更适宜于低温卷对卷

人S100钙结合蛋白A8(S100A8)ELISA检测试剂盒

检测原理试剂盒采用双抗体夹心法酶联免疫吸附试验(ELISA)。往预先包被人S100钙结合蛋白A8(S100A8)捕获抗体的包被微孔中,依次加入标本、标准品、HRP标记的检测抗体,经过温育并彻底洗涤。用底物TMB显色,TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成终的黄色。颜色的深浅和样品

新型阳离子通道TRIC研究取得进展

  钙离子作为第二信使,在细胞生命活动中发挥重要作用。肌浆网/内质网膜上RyR受体和IP3R是钙离子释放的重要通道,而SERCA蛋白是钙库吸收钙离子的重要离子泵。这些蛋白质机器的顺利发挥功能有赖于一系列离子通道的共同参与和协同完成。新型离子通道TRIC在钙离子释放过程中提供反向离子电流,帮助钙离子顺

结合蛋白质的简介

  结合蛋白质的分子中除氨基酸组分之外,还含有非氨基酸物质,后者称为辅因子,二者以共价或非共价形式结合,往往作为一个整体从生物材料中被分离出来。单纯蛋白质是指分子组成中,除氨基酸构成的多肽蛋白成分外,没有任何非蛋白成分称为单纯蛋白质。自然界中的许多蛋白质属于此类。而结合蛋白质是单纯蛋白质和其他化合物

蛋白结合碘(PBI)检查作用

  测定蛋白结合碘可反映甲状腺激素的水平。升高见于甲状腺功能亢进症、急性甲状腺炎、家族性甲状腺素结合球蛋白增多症、病毒性肝炎、妊娠、药物影响(含碘药物)。 降低见于甲状腺功能减退症,甲状腺摘除术后、家族性甲状腺素结合蛋白减少症、垂体前叶功能不全、慢性肾上腺皮质功能减退症、肾病综合征、肝硬化、营养不良

单链结合蛋白的概述

  螺旋酶沿复制叉方向向前推进产生了一段单链区,但是这种单链DNA不会长久存在,会很快重新配对形成双链DNA或被核酸酶降解。然而,在细胞内有大量单链DNA结合蛋白(single strand DNA binding protein SSBP)能很快地和单链DNA结合,防止其重新配对形成双链DNA或被

GTP结合蛋白的作用特点

一般情况下,信号分子与细胞表面的受体结合,然后,由以G蛋白为核心的信号传递系统把信息从胞外传递到胞内。G蛋白系统是细胞中最常见的信号传递方式。细胞中存在数以千计的特异性G蛋白偶联受体:有些识别激素,改变新陈代谢的水平;有些在神经系统中传递神经信号。我们的视觉依赖于一种光敏G蛋白系统;而我们的嗅觉则由

结合珠蛋白的主要特性

人的结合珠蛋白为一种α2 球蛋白,其结构受遗传控制,每个人的表型可用简单的电泳法加以检验。结合珠蛋白的遗传为常染色体不完全显性遗传,分别由HP1和HP2两个基因控制。因此个体之间可有多种遗传表现型。不同个体间,由遗传获得的特征基因型决定了血浆中HP的性质,这就是所谓基因多形性(polymorphis

关于结合珠蛋白的介绍

  是一种血浆糖蛋白,分子量约为90.000。能与红细胞外血红蛋白(Hb)结合形成紧密的非共价复合物Hb-Hp。每100ml血浆中具有足以结合40?80mg血红蛋白的Hp。每天降解的Hb约有10%释入血循环中,成为红细胞外游离的Hb,Hb与Hp结合成Hb-Hp复合物后分子量可达155.000,不能透

视黄醇结合蛋白(RBP)

视黄醇结合蛋白(retinol binding protein,RBP)是人体内的一类将视黄醇从肝中转运至靶组织以及实现视黄醇在细胞内运转代谢的特异性运转蛋白,在协助视黄醇储存、代谢及发挥生理功能中起着重要的作用。已经研究表明其与肾脏疾病、肝脏疾病、代谢性疾病及营养性疾病等多疾病相关。检测方法:免疫

结合DNA的蛋白质

结构蛋白可与DNA结合,是非专一性DNA-蛋白质交互作用的常见例子。染色体中的结构蛋白与DNA组合成复合物,使DNA组织成紧密结实的染色质构造。对真核生物来说,染色质是由脱DNA与一种称为组织蛋白的小型碱性蛋白质所组合而成;而原核生物体内的此种结构,则掺杂了多种类型的蛋白质。DNA可在组织蛋白的表面

新型阳离子通道TRIC研究取得进展

  钙离子作为第二信使,在细胞生命活动中发挥重要作用。肌浆网/内质网膜上RyR受体和IP3R是钙离子释放的重要通道,而SERCA蛋白是钙库吸收钙离子的重要离子泵。这些蛋白质机器的顺利发挥功能有赖于一系列离子通道的共同参与和协同完成。新型离子通道TRIC在钙离子释放过程中提供反向离子电流,帮助钙离子顺

研究发现特殊的钙离子通道或在糖尿病发挥重要作用

  近日,一项刊登在国际杂志PNAS上的研究报告中,来自瑞典卡罗琳学院等机构的科学家们通过研究揭示了分泌胰岛素的β细胞中特定类型的钙通道所扮演的关键致糖尿病角色,研究者认为,这些通道或有望成为开发治疗糖尿病的新型疗法的靶点。  图片来源:CC0 Public Domain  研究者表示,CaV3.1

植物细胞内一类免疫受体作为钙离子通道调控免疫

  2021年6月17日,美国北卡大学Jeff Dangl实验室、中科院分子植物科学卓越创新中心万里研究组和美国杜克大学裴真明实验室合作在Science发表了题为 Plant “helper” immune receptors are Ca2+-permeable non-selective cat

突触核蛋白与synphilin1蛋白结合

  Engelender等运用酵母双杂交技术发现synphilin-1蛋白能作为调节分子将α-突触核蛋白锚钉在参与囊泡转运和细胞骨架功能的蛋白分子上面[25];synphilin-1蛋白是一个90kDa的胞内蛋白质,含有ANKYRIN样重复单位、一个螺旋结构域和可能的ATP/GTP结合位点;Kawa

​钙调蛋白的功能特点

钙调蛋白是细胞第二信使系统的重要成分,在Ca信号系统传导中起着关键的作用,调控生理代谢及基因表达,控制细胞正常的生长和发育。钙调蛋白作为第二信使在植物信号转导中的作用一直是植物生理、细胞生物学和发育生物学研究的热点。Ca/CaM是有机体进化过程中最保守的信号转导级联反应系统,这一信号途径广泛存在于真

钙网蛋白的作用介绍

钙网蛋白是一种多功能蛋白,在内质网管腔内起主要钙(2+)结合(储存)蛋白的作用。它也在细胞核中发现,表明它可能在转录调节中起作用。钙网蛋白与合成肽klgfkr结合,后者几乎与核受体超家族的DNA结合域中的一个氨基酸序列相同。钙网蛋白与系统性狼疮和干燥病人的某些血清中的抗体结合,这些血清中含有抗Ro/

Cell子刊:钠离子通道蛋白的转运之谜

  神经冲动以电脉冲的形式,实现中枢神经系统的信息交流。为了发挥正常功能,起始神经冲动的关键蛋白必须到达正确的位置,不过一直以来人们并不了解这一过程的具体机制。现在,科学家们解开了这个谜团,鉴定了上述过程中的关键分子。   神经元需要通过神经冲动,将知觉、运动、思维和情感信息发送给神经回路中的其他

上海生科院揭示离子通道功能调控机制

  2月4日,中国科学院上海生命科学研究院神经科学研究所蔡时青组在《神经科学杂志》发表了题为《线虫Kv4钾离子通道KChIP辅助亚基调控肌肉兴奋性和控制雄虫交配行为》的研究论文。文章报道了线虫KChIP辅助亚基通过促进Kv4钾离子通道的生成,调控神经元和肌肉细胞的兴奋性,进而影响动物的一些重要行为。

深度结合技术可预言蛋白结合点查出致病突变

  据国外媒体报道,美国加州食品与农业研究学会科学家近日提出一项名为“深度结合”的最新技术手段,通过运用机器学习技术分析蛋白质与DNA和RNA的结合方式,查出可阻断细胞进程的致病突变。   美国加州食品与农业研究学会高级研究员布伦丹-弗雷运用“深度学习”技术,最新研发出一项可查出致病突变的科技手段。