陈宜张著作《突触》:研究“突触”的一块基石

读陈宜张院士沉甸甸的学术著作《突触》,我们深切感受到的是一位老科学家在科学征程上执着追求的赤诚。陈宜张已87岁,成就卓著,仍没有懈怠,辛勤耕耘,在独立出版54万字的《神经科学的历史发展与思考》五年之后,又以一人之力推出大作《突触》。其为神经科学传道授业的热忱,不能不让我们这些学界晚辈为之汗颜。 是什么原因让陈宜张在信息爆炸的年代写《突触》这样一本学术界最前沿的科学著作呢?原来,陈宜张在20世纪五六十年代曾读过两位诺贝尔奖得主的书,谢灵顿的《神经系统的整合作用》、艾克尔斯的《突触生理学》等。那时候,刚刚能够在电子显微镜下确认“突触”概念和用微电极技术记录突触后电位。在今天看来,一定是当时“突触”这个黑匣子激发了当年陈宜张。在一个甲子学术生涯的过程中,每一时期学术上的新突破和新认识想必使陈宜张欣喜若狂、熟记于心,然后又在新的问题里滋生新的遐思和狂想。 这个猜测可以从《突触》总共28章所描述的每一事件中得到验证。这本著作不是......阅读全文

神经所研究揭示发育期视网膜突触功能具有可塑性

  《神经元》(Neuron)杂志于8月9日发表了中科院上海生命科学研究院神经科学研究所杜久林研究组题为“斑马鱼发育期视网膜兴奋性突触功能的长时程增强”的研究论文。该工作运用在体研究方法,首次发现了视网膜突触功能在发育时期具有长时程增强(long-term potentiation,

中美学者用冷冻电镜解析大脑神经突触“黑匣子”

  突触是大脑行为、意识、学习与记忆等功能的基本结构与功能单元,也是多种脑疾病发生的起源。近期,中国科学技术大学教授毕国强、刘北明与美国加州大学洛杉矶分校教授周正洪组成课题组,利用冷冻电镜技术对完整突触进行了系统性定量分析。美国神经科学学会会刊《神经科学》日前以封面形式对此进行了报道。  精确解析突

黄海博士等报道非神经元细胞之间的类突触信号传导

  生物体的基本单位是细胞,细胞之间是如何交流信息一直是科学家们关心的问题。虽然动物身体中几乎所有细胞都与周围细胞交流,但许多科学家认为只有构成大脑和神经系统的神经元细胞才能通过突触连接完成直接长距离传输和接收信号的任务,而非神经元细胞主要是将信号蛋白分泌到细胞外空间中,通过扩散到达靶细胞。  神经

瘦素可促进突触形成或突触发生

  瘦素这种激素以调节食欲而闻名,如今证据表面,它似乎会影响神经元的发育——这一发现可能有助于解释诸如自闭症等与功能失调的突触形成有关的疾病。  瘦素是一种由成人体内脂肪细胞释放的激素,研究人员主要关注它是如何控制食欲的。在5月18日发表在《科学信号》(Science Signaling)杂志上的一

什么是免疫突触?

T细胞突触即免疫突触。成熟T细胞在与APC识别结合的过程中,多种跨膜分子聚集在富含神经鞘磷脂和胆固醇的“筏”状结构上并且互相靠拢成簇,形成细胞间互相结合的部位,其中心区为TCR和抗原肽-MHC分子,以及T细胞膜辅助分子和相应配体,周围环形分布着大量的其它细胞粘附分子。

最新研究发现突触脉冲的强度与突触大小直接相关

  神经细胞通过突触彼此交流。近日,发表在《Nature》上的一项研究中,来自苏黎世大学神经信息学研究所和苏黎世联邦理工学院的Kevan Martin实验室的研究团队发现,这些联系似乎比以前认为的要强大得多。突触越大,传递的信号就越强。这些发现将有助于更好地了解大脑功能以及神经系统疾病是如何产生的。

Cell-Res:神经元突触囊泡转运的分子调控新机制

  近日,中国科学院上海生命科学研究院神经科学研究所、脑科学与智能技术卓越创新中心、神经科学国家重点实验室熊志奇研究组,在小脑和运动障碍研究领域取得进展。相关研究成果以《PRRT2缺失造成小脑内的突触传递异常介导阵发性运动诱发性运动障碍》为题,在线发表在Cell Research上。研究人员系统地从

遗传发育所:糖鞘脂MacCer与Wnt相互作用促进神经突触生长

  脂质作为细胞膜组分和信号分子,对神经系统的发育与功能至关重要。多种参与脂代谢的基因突变后导致神经系统疾病。但脂质种类繁多并在合成代谢通路中相互转化,哪些脂质参与调控神经发育及其相关调控机制是神经生物学领域的重大科学问题。  中国科学院遗传与发育生物学研究所研究员张永清实验室以传统的模式生物果蝇为

中国科大团队在人工神经元突触的量子成像取得重要进展

近日,中国科大郭光灿院士团队孙方稳课题组和国家同步辐射实验室/核科学技术学院邹崇文课题组合作,制备了基于二氧化钒(VO?)相变薄膜的类脑神经元器件,并利用金刚石中氮-空位(NV)色心作为固态自旋量子传感器探测了神经元突触在外部刺激下的动态连接,展示了类脑神经系统中多通道信号传递和处理过程。这项研究成

Science:神经元突起中,单核糖体偏好性地翻译突触mRNA

  RNA测序和原位杂交揭示了神经元树突和轴突中存在意想不到的大量RNA种类,而且许多研究已经记录了蛋白在这些区室中的局部翻译。在信使RNA(mRNA)的翻译过程中,多个核糖体可以同时占据单个mRNA(一种称为多核糖体的复合物),从而导致编码蛋白的多个拷贝产生。多核糖体通常在电子显微镜图片中被识别为

神经网络电活动调控抑制性突触稳态可塑性的分子机制

  12月1日,《神经科学杂志》以封面文章的形式发表了中科院上海生命科学研究院神经所树突发育与神经环路形成研究组的论文Postsynaptic spiking homeostatically induces cell-autonomous regulation of inhibitor

3016个神经元和54.8万个突触,首张昆虫大脑图谱绘就

图片来源:Eye of Science/Science Photo Library科学家绘制了第一张完整的昆虫大脑图谱,包括所有神经元和突触。这是理解大脑如何处理感官信息流并将其转化为行动的里程碑式成就。相关论文3月9日发表于《科学》。果蝇是一种重要的模式动物,黑腹果蝇幼虫的大脑比罂粟籽还小。这项研

科学家阐明神经元细胞突触可塑性的分子机制

  近日,一项刊登在国际杂志Neuron上的研究论文中,来自日本东京工业大学等处的科学家们通过研究发现,当眼睛中的神经元长时间暴露于光下后,其会改变特殊分子的水平,随后研究者又鉴别出了一种特殊的反馈信号机制或许是引发这一改变的原因,因此研究者或可利用先天性的神经元特性来保护眼部神经元免于退化或细胞死

首次发现一对跨神经细胞的黏附分子,可控制多巴胺突触

  北京时间2021年6月17日晚23时,美国凯斯西储大学医学院神经科学系梅林教授研究组在Current Biology期刊发表论文——“In trans neuregulin3-Caspr3 interaction controls DA axonal bassoon cluster develo

研究发现谷氨酸受体信号肽在神经突触传递中的新功能

  人的大脑中约含有100亿个神经元,它们通过神经突触这一个独特而又基本的结构实现信息传递交流和整合。突触前神经元释放的神经递质,进入突触间隙之后会与定位于突触后膜的神经递质受体相结合,引起突触后神经元活性变化,从而实现神经信息的跨细胞传递。这一过程的调控异常被认为是神经精神疾病发生的重要原因之一,

物理所在类神经突触晶体管和忆阻器研究中取得进展

  计算机作为人类科技发展的代表,在人们的日常生活中起着不可替代的作用。随着人类社会信息量的高速增长,计算机在运算速度提高的同时,对能源的消耗也在迅速增加。例如,我国的“天河二号”超级计算机(连续三次夺得世界超级计算机冠军),正常工作的功率高达20兆瓦,年耗电量约2亿度。相比之下,人脑是自然界中非常

Nano-Energy:一种全透明的可见光响应的光敏神经突触器件

  薄膜晶体管(Thin-Film Transistors,TFTs)是半导体工业中最基础、最重要的三端电子元器件,已在平板显示、射频标签等消费类产品中广泛应用。近年来,TFTs在光电探测和光敏神经突触等领域已逐渐引起了人们的重视。与传统两端器件相比,光电TFTs具有以下突出优势:利用TFTs的栅压

科学家发现“线粒体炫”调控神经元突触水平的长时程记忆

  为什么有的记忆能铭刻一生而有的只能存在几分钟?短期的记忆如何转变为长期的记忆?近日,中国科学技术大学生命科学学院毕国强课题组与北京大学分子医学研究所程和平课题组合作,发现神经元树突“线粒体炫信号”在神经突触传递短时程记忆向长时程记忆的转化中可能发挥着关键作用,相关成果于6月26日在《自然-通讯》

突触信号传送的概念

中文名称突触信号传送英文名称synaptic signaling定  义神经系统中穿过化学突触进行细胞间的信号传递方式。应用学科细胞生物学(一级学科),细胞通信与信号转导(二级学科)

突触信号传送的定义

中文名称突触信号传送英文名称synaptic signaling定  义神经系统中穿过化学突触进行细胞间的信号传递方式。应用学科细胞生物学(一级学科),细胞通信与信号转导(二级学科)

人工突触可自主学习

  来自法国国家科学研究中心及其他研究组织的研究人员创造了一种能够自主学习的人工突触。他们还对该设备进行建模,这对于开发更复杂的脑回路至关重要。该研究4月3日在《自然—通讯》杂志上发表。  生物模拟学的目标之一是从大脑的功能中获得灵感,以便设计越来越多的智能机器。这一原则已经以完成特定任务的算法形式

突触信号传送的定义

中文名称突触信号传送英文名称synaptic signaling定  义神经系统中穿过化学突触进行细胞间的信号传递方式。应用学科细胞生物学(一级学科),细胞通信与信号转导(二级学科)

什么是T细胞突触-?

T细胞突触是APC(抗原提呈细胞)和T细胞相互作用的过程中,在细胞与细胞接触部位形成了一个特殊的结构,称为T细胞突触(T cell synapse),又称为免疫突触(immunological synapse)。

研究揭示突触可塑性长时程增强的突触后分子机制

  中枢神经系统是脊椎动物调控最复杂、最严谨的器官之一,控制着感觉感知、情绪调节和机体维持等基本神经活动,以及思维、认知和意识等高级神经活动。大脑最重要的特征之一就是能够存储大量的信息,即学习和记忆能力,在阿兹海默病等神经精神疾病的患者中,学习和记忆能力的异常是重要的临床表征之一。神经元之间相互形成

蛋白质上海设施揭示神经系统突触蛋白组织新机制

  8月26日,国家蛋白质科学研究(上海)设施五线六站用户香港科技大学生命科学部嘉里理学教授张明杰及其团队在《细胞》(Cell)杂志发表题为Phase transition in postsynaptic densities underlies formation of synaptic compl

新研究进一步破译神经元突触可塑性机制

  人类大脑如何将外部信息转化为自己的记忆?作为“人类大脑计划”的一部分,来自德国、瑞典和瑞士的科研小组研究了大脑纹状体中的神经元回路。研究结果发表在近期的《计算生物学》杂志上,对理解神经系统的基本功能具有重要意义。  大脑信息处理发生在通过突触连接的神经回路内,突触的任何变化都会影响我们记忆事物,

光疗增强突触功能-可改善阿尔兹海默症的神经退行性变

  疗被用来治疗许多精神健康问题,包括季节性情感障碍、双相抑郁、慢性抑郁障碍和市面。目前的研究表明,它对痴呆症也有用。  视交叉上核(suprachiasmatic nucleus)是负责调节清醒-睡眠周期的脑区,痴呆症患者的周期经常受到干扰,因为大脑的这一区域受到了损伤。光疗法被认为可以改善痴呆患

-Nature:星形细胞参与突触消除

  突触消除是脑发育的一个重要方面,在其中突触接触的数量以依赖于活动的方式减少。胶质细胞(在脑中发挥各种作用的非神经细胞)最近被发现在突触重塑中起一定作用,其中能吞噬细胞的小神经胶质负责一定比例的连接优化,而关于这一现象背后机制的其他情况则基本上不清楚。   在这篇文章中,Won-Suk Chun

简述突触核蛋白错误折叠

  研究发现α-突触核蛋白正常、错误折叠及其寡聚化之间存在动态平衡,当这种平衡被打破后原纤维迅速聚集成大分子、不溶性的细纤维;α-突触核蛋白在不同的影响因素下会表现出许多种形态,包括舒展态、溶解前球型态、α-螺旋态(膜结合),β-片层态、二聚体态、寡聚体态、以及不可溶的无定型态和纤维态;α-突触核蛋

神经所揭示智障相关蛋白CDKL5在兴奋性突触发育中的作用

  5月13日,《美国科学院院报》(PNAS)在线发表了中科院上海生科院神经科学研究所熊志奇组的最新研究论文:《棕榈酰化依赖的CDKL5-PSD95相互作用调控CDKL5的突触定位和树突棘的发育》。这项工作揭示了智障相关蛋白CDKL5在兴奋性突触发育中的重要作用,增进了对CDKL5相关疾病的机理的理