发布时间:2019-04-03 14:13 原文链接: Nature:血清素竟然也调控基因表达?!

  美国西奈山伊坎医学院的Ian Maze领导了这项研究。清华大学医学院的李海涛课题组、普林斯顿大学等机构的研究人员也参与了研究。这项成果于3月份发表在《Nature》杂志上,有助于人们更好地了解各种脑部疾病,包括情绪失调、药物滥用/成瘾和神经退行性疾病。

图片.png

  这项研究围绕着DNA以及它如何形成每个人的遗传图谱展开。众所周知,DNA缠绕在组蛋白的周围,形成核小体。当编码特定基因的DNA紧密缠绕时,这个基因不大可能表达。相反,松散缠绕的基因更有可能表达。不过,血清素对此过程有何影响呢?

  血清素化位点的鉴定

  之前的研究表明,血清素通过转谷氨酰胺酶2(TGM2)的转酰胺作用与胞质蛋白形成共价键。为此,研究人员探索了核蛋白是否也有类似的修饰。首先,他们研究组蛋白是否能作为血清素化(serotonylation)的内源性底物。通过Western blotting和重组TGM2酶分析,他们确认组蛋白H3是血清素化的内源性底物。

  之后,研究人员利用5-HT开展体外TGM2分析,接着进行靶向液相色谱-串联质谱(LC-MS/MS)分析,鉴定H3上的血清素化位点。结果表明,血清素化发生在组蛋白H3上的第5位谷氨酰胺(Q5ser)。当谷氨酰胺突变成丙氨酸时,TGM2的转酰胺基活性丧失。

  考虑到Q5ser与Lys4相邻,研究人员接着分析了K4me3对TGM2介导的单酰胺化的潜在影响。他们对未修饰核小体或H3K4me3核小体进行TGM2分析,发现K4me3对单酰胺化修饰无影响。同样地,Q5ser的存在对MLL1(H3K4甲基转移酶)体外修饰核小体的能力也没有影响。于是,他们对H3K4me3Q5ser这种组合开始感兴趣。

  研究人员制备了单修饰(H3Q5ser)和双修饰(H3K4me3Q5ser)的特异性抗体。他们以含血清素细胞系(RN46A-B14细胞)和成年小鼠的大脑为研究对象,在免疫沉淀后开展LC-MS/MS分析,证实了这些标记存在于哺乳动物细胞和组织中。不过,大脑中仅鉴定出双重修饰,故后续研究集中在H3K4me3Q5ser。

  他们接着研究了H3K4me3Q5ser在哺乳动物组织中的分布。他们发现,这种标记广泛表达,但主要集中在产生5-HT的器官(比如大脑和结肠)。同时,心脏、外周血单核细胞和睾丸中也观察到稳定的信号。

  血清素化调控基因表达

  之后,研究人员检测了人多能干细胞来源的5-HT神经元在分化前后的H3K4me3Q5ser表达。他们发现,分化导致H3K4me3Q5ser水平显著增加,同时伴随着H3K4me3的变化(图1)。染色质免疫沉淀的结果表明,H3K4me3Q5ser峰的总数也随着分化而明显增加。

图片.png

图1. H3K4me3Q5ser对人5-HT神经元的分化有反应

  小鼠大脑在胚胎发育过程中也呈现出一致的结果。与5-HT神经元的结果相似,在发育期间激活的神经元基因表现出H3K4me3和H3K4me3Q5ser的显著增加,而表达水平维持不变的其他基因则未表现出明显的标记变化。

  为了评估Q5ser在这些过程中的作用,研究人员又使用了RN46A-B14细胞培养模型。这些细胞能够在体外分化以增加5-HT的产生,诱导细胞周期停滞,并促进神经突向外生长的表型。与5-HT神经元和小鼠大脑的数据一致,他们发现RN46A-B14细胞分化导致H3K4me3Q5ser水平的显著增加。由此推断,H3K4me3Q5ser可能对基因表达有贡献。

  接下来,研究人员直接验证了H3K4me3Q5ser在基因表达中的作用。他们制备了表达野生型H3.3或突变体H3.3(Q5A)的慢病毒,这个突变阻止了血清素化,但不影响H3第4位赖氨酸的三甲基化能力,并将其转导到分化的RN46A-B14细胞。数据表明,与内源性H3K4me3Q5ser表达的竞争改变了靶基因的水平,对非靶位点几乎没有影响。在此期间,他们采用了赛业生物(Cyagen Biosciences)的慢病毒包装服务。

  在进一步探究H3K4me3Q5ser的作用机制时,研究人员以H3K4me3结合蛋白为对象,评估了Q5ser与K4me3组合的存在是否影响这些结合事件。他们发现,结合增强的是转录因子复合物TFIID的15个成员。随后的免疫沉淀和western blotting分析证实了TFIID与H3K4me3之间的相互作用得以增强(图2)。这意味着,血清素化让部分DNA变得松散,从而增强了基因表达。

图片.png

图2. H3K4me3Q5ser增强了TFIID与H3K4me3的相互作用

  作者表示,H3Q5的血清素化代表了组蛋白上第一个内源性的单酰胺化修饰,也代表了组蛋白谷氨酰胺残基上第一个非甲基化翻译后修饰。关于组蛋白血清素化的体内功能,还有许多问题待研究。比如,血清素对基因表达的调控是否也在情绪调节中发挥作用?这些新知识是否有助于开发更好的药物来治疗抑郁症或情绪失调?


相关文章

Nature:文化并非人类独有,猩猩传承文化能力

荷兰乌得勒支大学的研究人员在 Nature Human Behaviour 期刊发表了题为:Chimpanzeesusesocialinformationtoa......

数据存在虚假陈述该杰出学者NCB的文章也被撤回

2015年6月22日,St.Jude儿童研究医院DouglasR.Green团队在NatureCellBiology(IF=21)在线发表题为“MolecularcharacterizationofL......

神话破灭!轰动全球的4篇Nature、PRL等4项研究成果陆续被撤回

2022年8月11日,内华达大学AshkanSalamat及罗彻斯特大学RangaPDias等团队合作在ChemicalCommunications在线发表题为“Carboncontentdrives......

燕山大学发表2024年第2篇nature

燕山大学亚稳材料制备技术与科学国家重点实验室高压科学中心田永君院士团队与国内外学者合作,采用功能基元序构的设计策略,通过调控高能亚稳态到低能亚稳态的固态相变,合成出层状基元转角序构的氮化硼陶瓷,成功实......

Nature:2024年值得关注的七项技术,它是核心

随着人工智能(AI)技术的不断突破和大型模型的层出不穷,AI受到了前所未有的关注。面对这一浪潮,人们不禁好奇:未来究竟会是什么样子?为了解答这一问题,《Nature》杂志发布了未来的一年里,将密切关注......

七院院士,最新Nature:高性能柔性纤维问世,可穿戴电子新突破!

新加坡南洋理工大学的魏磊教授、七院院士高华建教授,以及中科院苏州纳米所的张其冲和中科院深圳先进技术研究院的陈明,共同发表了一篇关于高性能半导体纤维的最新研究成果。这篇题为“High-qualityse......

Nature发布2024年值得关注的七大技术,首位中国科学家成果入选

2024年1月22日,《自然》发布了2024年值得关注的七大技术——大片段DNA插入、人工智能设计蛋白质、脑机接口、细胞图谱、超高分辨率显微成像、3D打印纳米材料和DeepFake检测。七大技术中,生......

北京大学合作最新Nature

钙钛矿太阳能电池(PSCs)由一个固体钙钛矿吸收体夹在几层不同的电荷选择材料之间,确保设备的单向电流流动和高压输出在p型/intrinsic/n型(p-i-n)PSCs(也称为倒置PSCs)中,电子选......

零下273.056摄氏度我国科学家Nature发文实现无液氦极低温制冷

大约一个世纪前,人类首次将氦气液化,开启了利用液氦进行极低温制冷的新纪元。随后,极低温制冷技术被广泛应用于大科学装置、深空探测、材料科学、量子计算等国家安全和战略高技术领域。然而,用于极低温制冷的氦元......

回顾:2023年Nature\Science上的锂电池成果

2023年Nature上的电池文章汇总1.固态电解质最新成果登上Science日本东京工业大学创新研究所全固态电池研究中心RyojiKanno教授团队利用高熵材料的特性,通过增加已知锂超离子导体的组成......