发布时间:2022-07-19 23:23 原文链接: 笨拙的它为何弃天空而择海洋?

  陆地脊椎动物祖先从海洋登上陆地,鸟类的祖先又从陆地飞向了蓝天,而企鹅作为鸟类,却在约6000万年前,抛弃蓝天,再一次适应了海洋生态系统的,成为了鸟类中的最强潜泳者,并成功地在地球上的极端环境中生存下来的?

  7月19日,我国科学家领衔的中外联合团队通过多学科联合的方式重建了企鹅的起源与演化过程,并以此为案例揭示了环境变化、气候及地质事件对企鹅物种形成的影响,找到了一系列关键性状的分子基础解释了企鹅如何二次适应海洋生态环境。相关研究成果发表于《自然—通讯》上。

6.jpg

生活在南极大陆的帝企鹅 深圳华大生命科学研究院供图

  多学科联合解谜

5.jpg

近代企鹅 特蕾莎·科尔等绘

  在过去相当长的时间里,企鹅家族的演化历史扑朔迷离。科学家困惑于企鹅六大支脉之间的关系,始终没能完全厘清企鹅物种之间的关系。而已经知晓的企鹅化石足足有32个属,更是增加了理顺企鹅演化关系问题的难度。

  不能理解企鹅内部的演化关系,就无法了解企鹅是如何逐渐演化出现今的形态和特征的,也无法准确理解企鹅如何在极地环境的塑造下发生演化,也无法回答企鹅的飞鸟祖先为何会向海洋发生二次适应的问题。

  在这项研究中,科学家首次在全球范围收集了包括化石物种在内的几乎所有已知74种企鹅的形态及地理等数据,构建了全部24种现存企鹅和近代灭绝的3种企鹅的高质量基因组数据集。

  “这是首次在全球范围内公开所有近代企鹅物种的高质量基因组,包括亚种、地方支系以及近期灭绝的企鹅物种。”论文第一作者和共同通讯作者、丹麦生物多样性基因组研究中心博士后特蕾莎·科尔介绍,“这项研究还融合了基因组学和古生物学等手段,综合了灭绝物种和现生类群进行比较分析,厘清了企鹅成员之间的演化关系,也为演化基因组研究提供了许多新方法。”

4.jpg

重建的企鹅演化关系 特蕾莎·科尔、周程冉绘

  重建企鹅家族演化历程

  大约在6500万年前,白垩纪生物大灭绝事件后不久,企鹅的祖先在古西兰地区出现了。当时的古西兰已孤悬于大陆之外,南半球各个大陆分布也已接近今天的位置,只有南极大陆仍然通过陆桥与南美大陆相连。古企鹅正是从古西兰地区开始向古陆桥附近扩散。

  4000万年前,连接南极和南美两块大陆之间的陆桥断开,陆桥残存的部分成为了今天的南极半岛。从此,南极洲完全处在海洋的包围之中,随着海峡的逐渐打开,环绕南极的洋流开始形成,南极大陆的气候变得更加寒冷。

  3400万年前,南极冰盖形成。在相当长的历史时期,企鹅主要分布在古西兰、南极半岛和南美洲南部海岸及其附近海域。这个时期出现了不少巨型企鹅物种,如约2米高的卡氏古冠企鹅是迄今为止所知的最大型企鹅。

  直到约1400万年前,现代企鹅的共同祖先出现在了古南美洲。它们向南极洲扩散并首先在南极半岛和南极大陆分化形成了王企鹅属,之后,其他现代企鹅分支也先后出现。

  “现生企鹅的共同祖先出现在大约1400万年前,之后气候环境的变化推动了企鹅物种的快速分化,在分化过程中还伴随着复杂的基因流动,这些对现生企鹅的形态多样性的塑造造成了巨大的影响。”论文通讯作者、浙江大学生命演化研究中心教授张国捷告诉《中国科学报》。

  到了距今大约260万年前的时候,地球的气候又发生了剧烈的变化,第四纪冰期到来,企鹅家族也随之发生了快速演化事件,在较短的时间内分化出了大部分的现生物种。它们的分布范围大为扩展,覆盖了南极洲和南半球其它各主要大陆的南部海岸,基本奠定了今天的物种格局,成为了南冰洋最主要的海鸟。在这个过程中,逐渐增强的南极绕极流很可能为企鹅的传播提供了重要的助力。

  “在过去6000多万年的漫长时间里,企鹅经历了巨大的环境变化,尤其是从温暖亚热带到‘寒冰地狱’的变迁,但是每次环境剧变后都有企鹅支系能脱颖而出、繁荣兴盛。这提示企鹅有极强的演化适应能力,让我们对于这些神奇动物的未来感到乐观。”中国科学院动物研究所研究员张德兴在采访中谈到。

2.jpg

企鹅的历史分布及推测的扩散情况,箭头为企鹅可能的扩散路径,彩色区域为企鹅的分布范围。周程冉绘

  环境雕刻师如何塑造企鹅

  当研究团队站在演化的尺度上去观察企鹅,发现了它们的体型逐渐趋向小型化;喙、四肢等形态特征逐渐转变为更适合海洋环境的特征;企鹅的物种数目由于冰期事件的影响,也与温度呈现了相反的变化趋势。

  “传统上认为热带或温带生物相对极地生物会有更快的演化速率。”论文共同第一作者、深圳华大生命科学研究院周程冉博士提到,“但我们发现帝企鹅等高纬度企鹅具有比低纬度企鹅更快的演化速率。意味着南极环境引起的压力与历史气候波动等因素一同推动了企鹅的扩散与分化,也在一定程度上促进了高纬度物种对极地环境的适应。”

  此外,研究团队还找到了一系列关键基因,汇总出了企鹅适应寒冷环境以及水下生活的“基因秘诀”。

1.jpg

企鹅功能基因展示 周程冉、方妙全绘,照片来自pixabay

  比如水下视觉能力。相比空气,海水的透光性要差得多,由于海水的吸收作用,光被迅速削弱,仅有少许蓝光等短波长光能到达水下约200m的深度。“水下视力一直是潜鸟面临的巨大挑战,而在企鹅中,一些光敏感相关的基因生了突变,影响了光传导通路,促进了对蓝光、紫外光的识别,让企鹅具备了水下及暗光环境下敏锐的视觉。”论文共同一作、深圳华大生命科学研究院生物信息分析师方妙全解释,正是凭借多视觉基因改变的方式,企鹅获得了更好的水下视力。

  再如,作为具有最强潜泳能力的鸟类,企鹅中的血红蛋白和肌红蛋白具有显著区别与其它鸟类的保守位点,王企鹅属也有区别与其它企鹅的保守位点。“这些特征使得企鹅能够更高效地利用血液中的氧气,使其自身成为了‘高效富氧舱’,延长了潜水时间。”方妙全补充道。

相关文章

研究鉴定出新的玉米抗粗缩病基因

华南农业大学生命科学学院教授王海洋团队联合中国农业科学院作物科学研究所等研究人员,通过图位克隆、转录组和代谢组等生物学手段,研究揭示了ZmDBF2-ZmGLK36-ZmJMT/ZmLOX8分子模块调控......

我国成功培育高耐草甘膦低残留玉米

草害是制约玉米高产稳产的关键要素之一,田间杂草与玉米争夺水、肥、光和空间,且易滋生病虫害,化学除草是玉米田首选的除草方式。草甘膦是世界第一大除草剂,其灭生性的特点在防治杂草的同时对玉米也会产生药害,培......

肥胖研究五大关键问题究竟如何?《科学》给出解释

北京时间9月1日晚10点,中国科学院外籍院士、中国科学院深圳先进技术研究院医药所能量代谢与生殖研究中心首席科学家JohnRogerSpeakman与丹麦哥本哈根大学公共卫生研究院的ThorkildSo......

基因组测序拯救鸮鹦鹉

为了保护极度濒危的新西兰鸮鹦鹉kakapo,几乎所有剩余个体的基因组都已被测序,这为其保护管理提供了重要信息。新西兰鸮鹦鹉kakapo(Strigopshabroptila)有几个特性。它是世界上最重......

“痴呆基因”甩不掉?或因赋予女性一大优势

大约1/5的人出生时携带至少一份APOE4基因变异,这使他们在年老时更容易患心脏病和阿尔茨海默病。这种变异如此普遍,给进化带来了一个谜:如果APOE4影响了人类健康,随着时间的推移,为何它没被清除出人......

深圳先进院等建立单细胞轨迹推断技术

7月31日,中国科学院深圳先进技术研究院合成生物学研究所胡政课题组与厦门大学数学科学学院周达课题组合作,在《自然-生物技术》(NatureBiotechnology)上,发表了题为PhyloVeloe......

研究发现提高鲜食玉米耐热性基因

近日,广东省科学院南繁种业研究所玉米种业室团队以甜玉米为研究对象,对甜玉米高温下的表型特征变化进行观察,发现了提高鲜食玉米耐热性基因。相关研究论文发表于InternationalJournalofMo......

研究解开水稻生殖隔离之谜

一般来说,水稻品种间亲缘关系越远,杂交优势越明显。据预测,如果籼稻和粳稻亚种间能育成超级杂交稻,可以比现有杂交水稻增产15%以上,因此,如何利用亚种间的超强优势一直受到育种家的关注。7月26日,中国工......

分子植物卓越创新中心揭示白僵菌合成β卡波林糖苷的进化与代谢机制

7月19日,《美国国家科学院院刊》(PNAS)在线发表了中国科学院分子植物科学卓越创新中心王成树研究组完成的题为Abacterial-likePictet-Spenglerasedrivestheev......

治疗2型糖尿病药物甲福明有助抗老化

香港大学(港大)20日公布,港大医学院公共卫生学院的研究团队发现,治疗2型糖尿病的药物甲福明(二甲双胍)有助抗老化。港大医学院表示,甲福明是治疗2型糖尿病的一线药物,越来越多的证据显示甲福明除了可稳定......