发布时间:2022-01-19 09:46 原文链接: 科学家破解植物嫩芽顶端弯钩形成机制

春天,种子发出的嫩芽能够以柔克刚破土而出,让不少人惊叹生命的力量。研究发现,嫩芽顶端的弯钩是其成功出土的关键所在。然而,顶端弯钩的形成机制却困扰了科学家100多年。

“《科学-进展》近日报道了我们关于植物顶端弯钩形成机制的研究成果,我们成功揭示了植物嫩芽顶端弯钩的发育形成机制,系统解答了这一悬而未决的问题。”1月18日,中国科学院遗传与发育生物学研究所研究员李传友告诉科技日报记者。

顶端弯钩的形成本质上是生长素对细胞生长的差异控制

埋在土里的种子发芽后,要想成功破土而出。一方面,需要幼苗的下胚轴通过快速向上生长,获得破土而出的动力;另一方面,需要下胚轴的顶端形成一个称为“顶端弯钩”的结构,将脆弱的子叶和顶端分生组织弯向下生长。

“这种弯曲的结构,既能保证幼苗拥有一个相对坚硬的‘钻头’冲破土壤,又能避免子叶和顶端分生组织在出土过程中与土壤直接冲撞而造成机械损伤。”李传友说,对于绝大多数双子叶植物而言,顶端弯钩的形成是成功出土的关键所在。

早在1881年,达尔文父子就曾对顶端弯钩的形成进行了初步探讨。“之后的140年里,尽管顶端弯钩吸引了无数植物生物学家的研究兴趣,但其具体的发育形成机制一直是植物生物学领域的未解之谜。”李传友强调。

事实上,顶端弯钩是由于下胚轴顶端两侧的细胞差异性生长导致的。生长素的不对称分布是导致这种差异性细胞生长的原因:弯钩内侧高浓度的生长素抑制细胞生长,从而导致内侧细胞生长慢而外侧细胞生长快,使得下胚轴向内弯曲。

因此,“本质上来讲,顶端弯钩的形成是生长素对植物细胞生长的差异性调控问题。”李传友说。

作为一种生长类调节激素,生长素最重要的作用之一是调节植物细胞的生长/大小。生长素对植物细胞大小的调节具有严格的组织和浓度依赖性。李传友介绍,一般来说,高浓度生长素抑制细胞生长,而低浓度生长素促进生长。在生理浓度范围内,生长素在地下部分抑制细胞生长,而在地上部分促进细胞生长,这也是植物的不同器官具有不同重力反应的生理基础。

有趣的是,生长素在下胚轴中促进细胞生长的同时,在顶端弯钩内侧却抑制了细胞生长。它是怎样做到在如此近的部位发挥完全相反的作用呢?

重力是触发幼苗顶端弯钩形成的起始信号

研究人员发现,在幼苗发育的早期,下胚轴中高浓度的生长素抑制细胞生长;之后,随着下胚轴细胞的快速生长和体积变大,高浓度的生长素逐渐被稀释到一个相对较低的浓度,转而促进细胞生长。

“这种生长素导致的由抑制转为促进的生长调控使得下胚轴经历了两个不同的生长阶段,即早期速度慢而晚期速度快。早期的慢速生长恰好为顶端弯钩的形成提供了一个发育窗口。”李传友说,后续研究表明,重力是触发幼苗顶端弯钩形成的起始信号。

李传友进一步解释道,在生长素抑制细胞生长的早期慢速生长阶段,重力诱导高浓度生长素在下胚轴的下侧积累,导致该侧细胞的生长抑制得以加强,而另一侧的生长抑制得以缓解。因此,此时的下胚轴像根一样具有正重力反应而向下弯曲生长,进而启动弯钩的形成。

同时,随着下胚轴细胞由基向顶的快速生长,底部细胞先于顶端细胞生长变大,使得这些细胞内的生长素浓度也先于顶端细胞被稀释到一个相对较低的浓度。这种生长素浓度的降低导致其对细胞生长的调控作用由抑制转变为促进。相应地,下胚轴底部的重力反应也由正变负转而向上直立生长。而顶端细胞因仍具有较高的生长素浓度而保持正重力反应向下弯曲。

“随着越来越多的下胚轴细胞由基向顶地转入直立向上的生长阶段,顶端弯钩获得快速向上的动力,最终帮助幼苗破土而出。”李传友说。

此外,研究人员还揭示了顶端弯钩内侧高浓度生长素抑制细胞生长的分子机制。

相关文章

马斯克惹恼了科学家?Twitter危机引发社交媒体大迁徙,科学家们去往何处?

加利福尼亚州旧金山Twitter总部的一部分被拆除的标志,远处有一只鸟在天空中飞翔。《自然》杂志一项调查的数百名受访者表示,他们已经离开了这个以前称为Twitter的平台。米里亚姆·维达尔·瓦莱罗(M......

黑龙江建成95家中国科学院科学家工作室

近日,黑龙江省中国科学院王选生物菌肥开发工作室在黑龙江省绿色食品科学研究院揭牌。据黑龙江省科技厅最新统计,截至11月20日,黑龙江省中国科学院科学家工作室已发展到95家,为推动全省区域创新能力提升和产......

46位拿到“新基石”连续5年2500万不看项目只看人

2023年10月30日,腾讯公司“10年100亿元资助基础研究”的“新基石研究员项目”第二期名单发布,来自数学与物质科学、生物与医学科学领域的46位科学家上榜,成为第二批“新基石研究员”。2023年第......

辽宁省认定首批20个科学家精神教育基地,让更多人有机会走进科学家世界

不久前,辽宁省认定了首批20个科学家精神教育基地。自获得认定以来,不少教育基地相继开展了公开课、主题展览等特色活动,积极讲好科学家故事,弘扬科学家精神。现实中,一些教育基地的开放受到各种条件限制,难以......

英国重返“地平线欧洲”项目

近日举行的一场深夜谈判中,英国终于和欧盟达成协议,重新加入“身价”950亿欧元的欧盟旗舰科学项目——“地平线欧洲”。这意味着英国科研人员可以申请“地平线欧洲”的项目资金并申请参与相关研究。据《自然》报......

BCEIA2023第四届青年分析科学家论坛:推动分析化学前沿领域的新发展

 2023年9月6日-8日,第二十届北京分析测试学术报告会暨展览会(BCEIA2023)在北京•中国国际展览中心开幕。同期会议——青年分析科学家论坛是北京分析测试学术报告会暨展览会(BCEI......

科学家利用神经网络设计全新蛋白质

美国麻省理工学院研究人员在新一期《应用物理学杂志》发表的论文中,将注意力神经网络与图神经网络相结合,以更好地理解和设计蛋白质。该方法将几何深度学习与语言模型的两种优势结合起来,不仅可预测现有蛋白质特性......

“大湾区科学家”搭建三地科技合作桥梁

“大湾区科学家”搭建三地科技合作桥梁广东加快推动粤港澳协同创新,苏国辉院士率先在内地建立联合实验室“今天有没有运动啊?”这是中国科学院院士、暨南大学粤港澳中枢神经再生研究院院长苏国辉与人聊天时,最常用......

我国科学家创造城际量子密钥率新纪录

央广网北京6月24日消息近日,北京量子信息科学研究院袁之良团队与南京大学尹华磊合作,首次在实验上实现了打破安全码率-距离界限的异步测量设备无关量子密钥分发(也称模式匹配量子密钥分发),成功实现508公......

专访香港科学家陈清泉:研究电动车还要分秒必争

今年初,86岁的香港科学家陈清泉荣获“感动中国2022年度人物”奖,颁奖词是“中国制造,今天车辙遍布世界。你是先行者,你是领航员。”他说:“以前虽拿过很多奖,但这个奖意义非凡,让我惊喜,感到无比光荣,......