科学家研究出新型,简单,低成本仪器,通过获知表面电荷密度或者溶液PH值的变化即可探测出DNA以及其他生物分子。

  2015年1月13日华盛顿—一种简单易行的探测DNA分子以及癌症和其他如阿尔茨海默氏症标记蛋白的方法很快将要问世--这要归功于日本横滨国立大学(Yokohama National University)研究组的工作。

  据研究组发表在美国物理联合会出版的《应用物理快报》上的文章所述,他们制造了一种基于光子晶体纳米器的生物感应器,可以根据激光波长的移动来探测生物分子的吸收特性。

  另一个重要的发现是,这种基于纳米激光器的生物感应器可通过激光辐射强度探测表面电荷的情况,这一点也可被用来探测生物分子的吸收特性。使用激光强度来探测生物分子过程更为简单,因此比常规用于感应器的荧光标记或荧光光谱成本低。

  在课题组开始研究该生物感应器时,他们所关注的重点不在于激光辐射强度,因为辐射强度对于激光器的质量非常敏感,并且它并不能有效地感应信号。

  “一开始我们关注的是波长的行为,但是很快就注意到(激光辐射)强度会受到溶液pH值和聚合物的影响,” 横滨国立大学电子与计算机工程系的教授Toshihiko Baba说。“我们的实验结果有很高的重复性,而且有趣的是,我们发现波长和强度的行为是彼此独立的。”

  这个结果让研究人员们很吃惊,他们发现这一现象时,用原子层沉淀法将二氧化锆保护层镀在仪器表面,之后用该仪器分别探测具有高,低pH值以及含有带电聚合物的溶液。结果显示,保护镀层对于保护纳米激光器不受损坏以及避免不必要的波长移动十分必要。

  纳米激光器可以感应表面电荷,是因为表面电荷改变了电子在激光器半导体表面态中的占用率,Baba解释到:“这就改变了半导体的发光效率。”

  迄今为止,该组的工作是用光子晶体感应器探测表面电荷的首次报道。“这使得基于纳米激光器的生物感应器可通过波长和强度两个参数来探测生物分子的吸收特性,”Baba说。其结果涵盖不同的物理参数,研究人员可用来进一步分析生物分子的信息。

  并且该技术“仅通过测量强度,也可以探测出生物分子的吸收信息,这一点和传统方法相比是一个显著优势,”Baba补充到。

  传统的生物传感方法“依赖于官能于生物分子的荧光标记,”他说。“据此,我们通过光激励便很容易锁定生物分子,事实上这也是当前应用于生物学和医学诊断领域的标准方法。”那么传统方法的缺点有哪些呢?荧光标记官能化的过程常常费用昂贵。

  为了解决这一问题,许多研究组致力于研发无标记探测方法,比如利用光学谐振腔和电浆态中的共振。但是这些方法需要用到波长或共振光角的光谱分析,费用依然不菲。

  而基于纳米激光器的生物感应器通过激光强度的变化来探测生物分子,这样既不需要标记也不用光谱仪,因此大大简化了探测的过程,这一方法已经在DNA分子中得到了验证。

  谈到纳米激光生物感应器的潜在应用,研究组希望该技术“作为一种比以往更为简单的方法在人类体液如血液中探测DNA分子,探测癌症以及阿尔茨海默氏症的标记蛋白,”Baba强调说。“我们打算进一步研究这种现象的敏感性,选择性和稳定性。如果这些问题都可以被理清,我们将把该技术推向实际应用。”

  “我们的研究项目从2012年开始,将持续到2016年,最终目标是研发出基于光子晶体纳米激光器的感应器,用来探测生物标记,”Baba说。"我们目前在进一步简化和发展感应器,希望在未来几年内可以投入实际应用。”

相关文章

原核短Ago系统在病毒入侵后所发生变化获揭示

核糖核酸诱导的转录后基因调控在生命个体抵御外源入侵的过程中起到至关重要的作用。自然界中的生命体无时无刻都需要应对各种外部入侵,如细菌、病毒等。为了应对这些入侵,生命体的细胞会产生一种叫做核糖核酸的分子......

诺奖带人类进入阿秒时代拍摄电子和生命流动的瞬间

2023年诺贝尔物理学奖授予俄亥俄州立大学的PierreAgostini,匈牙利-奥地利物理学家 FerencKrausz 和法国/瑞典物理学家 AnneL’Huilli......

多学者热评Nobel物理学奖为啥是3人而不是4人?

FerencKrausz、AnneL’Huillier和PierreAgostini(从左至右)。图片来源:ALEXANDRABEIER;BERTILERICSON;MICHELEULER10月3日,......

物理所魏志义评Nobel物理学奖得主

刚刚,瑞典皇家科学院宣布,将2023年诺贝尔物理学奖授予美国科学家皮埃尔·阿戈斯蒂尼、德国科学家费伦茨·克劳斯和瑞典科学家安妮·勒惠利尔,以表彰他们“为研究物质中的电子动力学,而产生阿秒激光的实验方法......

9月份生命科学领域掀起投融资狂潮,40余家企业完成数十亿融资!

在9月份,生命科学领域迎来了一场投融资的狂潮,众多企业纷纷参与其中。这一领域的创新和发展得到了全球范围内的广泛关注和认可,吸引了大量的资本和资源,40余家企业完成数十亿融资!生命科学涵盖了从生物大分子......

亚通生物完成近亿元A+轮融资

2023年9月,苏州亚通生物医疗科技有限公司(以下简称“亚通生物”)宣布完成近亿元A+轮融资,本轮融资由乾道基金领投,博润资本跟投,凯乘资本继续担任独家财务顾问。2022年8月,亚通生物获得了来自杏泽......

揭榜挂帅!生物医用材料创新任务(第一批)入围揭榜单位名单

近日,工业和信息化部办公厅和国家药品监督管理局综合和规划财务司共同发布“关于公布生物医用材料创新任务揭榜挂帅(第一批)入围揭榜单位”的通知,经各地推荐、综合评审和网上公示,确定了生物医用材料创新任务揭......

暨南大学首个国家重点实验室启动副校长叶文才任主任

9月16日,生物活性分子与成药性优化全国重点实验室在广州正式启动建设。据悉,该重点实验室是暨南大学首个全国重点实验室,由天然药物化学家、暨南大学副校长叶文才担任主任,拥有固定研究人员155人,其中国家......

一文读懂生物显微镜的基本使用流程

【引言】生物显微镜是一种用于观察生物切片、生物细胞、细菌以及活体组织培养、流质沉淀等的精密光学仪器。它还能够观察其他透明或半透明物体、粉末和微小颗粒等物体。生物显微镜已有三百多年的历史,最早由荷兰人列......

AnalyticalChemistry|朱正江课题组基于神经网络构建的离子淌度质谱CCS值数据库

中国科学院上海有机化学研究所生物与化学交叉研究中心朱正江研究员团队在AnalyticalChemistry杂志在线发表了题为“AllCCS2:CurationofIonMobilityCollisio......